Visual Computing Library
Loading...
Searching...
No Matches
principal_curvature.h
1/*****************************************************************************
2 * VCLib *
3 * Visual Computing Library *
4 * *
5 * Copyright(C) 2021-2025 *
6 * Visual Computing Lab *
7 * ISTI - Italian National Research Council *
8 * *
9 * All rights reserved. *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the Mozilla Public License Version 2.0 as published *
13 * by the Mozilla Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * Mozilla Public License Version 2.0 *
20 * (https://www.mozilla.org/en-US/MPL/2.0/) for more details. *
21 ****************************************************************************/
22
23#ifndef VCL_CONCEPTS_SPACE_PRINCIPAL_CURVATURE_H
24#define VCL_CONCEPTS_SPACE_PRINCIPAL_CURVATURE_H
25
26#include "point.h"
27
28#include <vclib/types.h>
29
30namespace vcl {
31
38template<typename T>
39concept PrincipalCurvatureConcept = requires (
40 T&& obj,
41 typename RemoveRef<T>::ScalarType s,
42 typename RemoveRef<T>::ScalarType& sR) {
43 typename RemoveRef<T>::ScalarType;
44
45 RemoveRef<T>();
46
47 { obj.maxDir() } -> PointConcept;
48 { obj.minDir() } -> PointConcept;
49 { obj.maxValue() } -> std::convertible_to<decltype(s)>;
50 { obj.minValue() } -> std::convertible_to<decltype(s)>;
51
52 // non const requirements
53 requires IsConst<T> || requires {
54 { obj.maxValue() } -> std::same_as<decltype(sR)>;
55 { obj.minValue() } -> std::same_as<decltype(sR)>;
56 };
57};
58
59} // namespace vcl
60
61#endif // VCL_CONCEPTS_SPACE_PRINCIPAL_CURVATURE_H
The IsConst concept is satisfied if T satisfies one of the following conditions:
Definition const_correctness.h:43
Concept for types representing points in Euclidean space.
Definition point.h:40
Concept for types representing principal curvature directions and values at a point on a 3D surface.
Definition principal_curvature.h:39