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Figure 1: From left to right: the original model; the result of the automatic simplification (Section 3); the clean model after spurious facets
removal (Section 4); its unfolding for fabrication using CNC milling machines.

Abstract
We introduce here a pipeline for simplifying digital 3D shapes with the aim of fabricating them using 2D polygonal flat parts.
Our method generates shapes that, once unfolded, can be fabricated with CNC milling machines using special tools called
V-Grooves. These tools make V-shaped furrows at given angles depending on the shape of the used tool. Milling the edges of
each flat facet simplifies the manual assembly that consists only in folding the facets at the desired angle between the adjacent
facets. Our method generates simplified shapes where every dihedral angle between adjacent facets belongs to a restricted set,
thus making the assembly process quicker and more straightforward. Firstly, our method automatically computes a simplification
of the model, iterating local changes on a triangle mesh generated by applying the Marching Cubes algorithm on the original
mesh. The user performs a second manual simplification using a tool that removes spurious facets. Finally, we use a simple
unfolding algorithm which flattens the polygonal facets onto the 2D plane, so that a CNC milling machine can fabricate it with a
sheet of rigid material.

CCS Concepts
•Computing methodologies → Mesh models; Shape analysis; Shape modeling;

1. Introduction

Fabrication of digital objects has found a considerable interest by
researchers in computer graphics and geometry processing. 3D
printers are the most commonly used machines to produce physical

representations of digital objects. In the most typical scenario, the
printer deposits a filament, layer by layer, that solidifies and forms
the final result following a software-generated path. These machines
permit printing arbitrarily complex geometries assuming to process
the input mesh in order to compute supports and internal filling.
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However, 3D printers are not the only technology that allows
reproducing physical objects. Subtractive techniques, usable with
CNC milling machines, follow a different philosophy compared to
3D printers: a numerically controlled tool moves in order to remove
the material from a solid block, until reproducing the desired shape.
These machines are mainly used to produce very regular objects
in the mechanical engineering field. They can produce free-form
geometries, but the characteristics of the used machine constrain
them: they can have 3-, 4- or 5-axis meaning that the tool moves
along the three principal axes plus one or two rotations axes. The
choice of the machine is crucial to determine if the geometry can be
fabricable. This aspect, along with difficulty on producing toolpaths
especially for 4- and 5-axis machines, makes subtractive techniques
still “immature” to use for fabrication of free-form geometries.

Another possible approach for obtaining physical representations
of digital shapes is to apply some operations, such as deformations
or simplifications, in such a way that the result becomes suitable for
special fabrication techniques. There is much previous work focused
on processing a digital shape in order to obtain a representation using
blocks of material cut by a laser-cutter machine. Laser-cutters can
perform straight or curved cuts on a block with limited thickness,
using a high-power laser. These machines can be used to perform
precise cuts on sheets of flat rigid materials, such as plywood or
rigid paper, and produce 2D shapes, that can be combined to form
the desired object.

As discussed in Section 2, many previous works aimed to create a
simplified model to obtain a polygon mesh for fabrication purposes.
All these works introduced a variety of joint systems used to allow
an easy assembly process. Joint problems arise when two adjacent
primitives (cut with machines like laser-cutters) should be joined
manually along the joint edge at an arbitrary angle between them.
A proper joint system allows the user to quickly obtain the desired
arbitrary angle avoiding errors which can be propagated and that
could cause an inadequate representation of the desired shape.

Our idea differentiates from this approach since we want to sim-
plify our models so that there is no need to address the problem of
designing joints necessary for the manual assembly process after
the manufacturing. At the same time, we propose an approach that
makes the manual assembly process more manageable and less error-
prone. We plan to use CNC machines with V-Groove milling tools
to carve our models on a sheet of rigid material (e.g., plywood, stiff
paper, plexiglass). V-Groove (or V-Router) cutters are accessories
for milling which allows engraving furrows on blocks of millable
materials. These V-shaped milling tools enable to mill exact angles
corresponding to the solid angle of the tool. There are plenty of
available tools with different cutting angles on the market, with the
most common being multiples of 30 and 45 degrees (Figure 2).

Once finished the carving process, it is possible to quickly fold
the sheets, until reaching the desired dihedral angle along the edge
(Figure 3).

To use this carve-and-fold strategy, we need to simplify our model
so that all its internal dihedral angles belong to a restricted and well-
defined set containing only angles that a V-Groove milling cutter can
carve. As a direct consequence of this constraint, we have that each
normal of the facets of the simplified model belong to a pre-defined
set of values.

Figure 2: V-Groove milling cutters can mill furrows with correct an-
gles on rigid materials, and they are available with different milling
angles on the market (courtesy of www.toolstoday.com and
www.aliexpress.com).

(a) A 90◦ fold needs a 90◦ tool

(b) A 120◦ fold needs a 60◦ tool (c) A 60◦ fold needs a 120◦ tool

Figure 3: Different folds made using V-Groove milling tools.

We propose a method whose output has normals belonging to a
restricted set. We use Marching Cubes, working on a binary scalar
field defined by the input model in order to obtain a final model
with a reduced number of flat facets. We designed and developed
a GUI that allows the user to select and remove all the unneeded
facets obtained at the previous step. We introduce a novel unfolding
algorithm suited for our purposes whose output is a 2D representa-
tion of the simplified model that is fabricable using a CNC milling
machine with V-Groove tools.

2. State of the Art

Our work fits into the domain of geometry processing for digital
fabrication [LSWW14, UBM15, LEM∗17]. More precisely, we aim
to simplify a model in order to fabricate it with polygonal portions
of rigid flat materials, like plywood. This category of works relies
massively on laser cut machines. We address a new challenge, using
subtractive methodologies, specifically 3-axis CNC milling ma-
chines, with special cutting tools called V-Groove tools, that allows
creating easy-to-fold joints. Below we review related simplification
technologies.

Mesh simplification and approximation have been trend-topics in
recent years.

In [CSAD04] the authors propose a method which produces an
approximation of the surface using a variational approach. The result
is a general-purpose and sound technique, applicable to a digital
object of genus greater than zero. Unfortunately, the results do not
satisfy the significant constraint we pose to our system: a small
number of angles of fixed size.
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In [ZLAK14] the authors try to solve the problem of representing
an input surface using Zometool, a mathematical modeling system
used in various areas. Their approach introduces an angle constraint:
every Zometool node has a small set of possible directions, and
therefore the angle formed along the edges belongs to a well-known
restricted set. However, they do not need to simplify the input mesh
with the goal of obtaining a small number of faces on their output
mesh.

We compare ourselves more directly to methods of fabrication of
3D digital shapes using flat sheets of rigid materials. Richter and
Alexa in [RA15] represent an input geometry using beams with
a rectangular cross-section. They present some beams fabricable
in wood, manufactured with laser cutter machines and assembled
with particular joints (Figure 4). Schwartzburg and Pauly in [SP13]
and Cignoni and colleagues in [CPMS14] present methods for the
fabrication of 3D models interlocking planar pieces and strips. All
these three works propose a solution to problems which are substan-
tially different from ours: they do not aim to create a surface but to
generate a set of strips or planar pieces that are joined together (with
interlocks or another type of joints). We, instead, want to produce a
foldable sheet which, once folded, is a 3D surface composed of few
polygonal planar faces.

Figure 4: Joints used in [RA15].

Mitani and Suzuki solve a problem more strictly comparable to
our in [MS04]. They simplify an input shape, producing a set of
triangle strips that can be cut, folded and glued together to obtain a
papercraft object. However, the primitives of the output are limited
to triangles, and the assembly process is quite tricky, mostly suitable
for papercraft lovers only.

Chen and colleagues in [CSaLM13] introduce a method which
solves a problem very similar to ours. The authors approximate the
input surface to a 3D mesh with a small number of planar polygonal
faces for fabrication with CNC cutter machines. However, their
assembly process is very complicated: it needs proper connectors
(some examples are shown in figure 5), and it could take several
hours for a single model. In our method, we introduce an additional
constraint on the possible dihedral angles between adjacent faces,
to simplify the assembly process.

Chen and Sass [CS16] try to solve the assembling problem creat-
ing a novel interlocking system with unique joining features (Figure
6). Unfortunately, their work focuses only on models produced with
CAD tools and cannot apply to free-form shapes.

Song and colleagues in [SDW∗16] combine laser cutting and
3D printing in order to produce a large object more cheaply and
quickly. They first produce an internal base object composed of flat

Figure 5: Joints used in [CSaLM13].

Figure 6: Joints used in [CS16].

pieces cut with a laser cutter machines, and then they attach thin 3D
printed pieces in order to introduce the details of the input object.
To assemble the internal structure, they propose joints designed
explicitly for the reproduction of the desired angle between pieces
(Figure 7). The goal of their work goes far beyond our purposes and,
moreover, they do not assemble a single sheet with a carve-and-fold
approach but use joints.

Figure 7: Joints used in [SDW∗16]

Polycubes are simplified models in which every primitive is or-
thogonal to one of the three principal axes ( [THCM04]). They
resemble somehow to the models we aim to produce. There is a vast
literature on automatic generation of polycubes (e.g., [LVS∗13]),
optimization of existing polycubes (e.g., [CLS16]) and use of poly-
cubes for the generation of hexahedral meshes (e.g., [LMPS16]).
However, polycubes are very simple 3D meshes, and they cannot
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resemble the original model when it has slanted faces with respect
to the axes. Moreover, having only 90-degree dihedral angles on the
final results would be very restrictive compared to the V-Groove
tools for milling available on the market.

Finally, in [BCMP18] the authors analyze many related works
which reflect the current state-of-the-art in the stylized fabrication
of 3D shapes.

3. Surface approximation

The first pass of our pipeline relies upon the application of the
Marching Cubes algorithm to the input shape. The Marching Cubes
algorithm [LC87] generates a triangle mesh of an iso-surface start-
ing from a scalar field. We generate the input scalar field of boolean
values immersing the input shape in a regular lattice of cubes. By
construction, each possible triangle normal of the resulting com-
puted mesh belongs to a finite and well-defined set. As a direct
consequence, all the possible dihedral angles between triangles are
finite and known. We describe the set N of all the triangle normals
which we can generate in the next paragraph.

The normals. A normalized face normal which belongs to the set
N is a 3D vector where:

vx,vy,vz ∈ {+s,0,−s} with : s ∈ {1,
√

2
2

,

√
3

3
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Normals in the set N are 3D vectors divided into three categories
as listed below.

1. Six vectors with one component different from 0:
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3. Eight vectors with three components different from 0:
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].

Pairs of normals from this set form dihedral angles that are mostly
of 30◦, 45◦, and their multiples. Since these angles correspond to
available V-Groove tools, Marching Cubes perfectly suits to our
purpose.

3.1. Initialization

We generate the lattice regularly subdividing the bounding box of
the input mesh, taking care to scale it to have only integer lattice
coordinates. The vertices of the lattice are labeled 1 if they are inside
the surface and 0 if they are outside. We then run the discretized
Marching Cubes algorithm [MSS94b] onto the lattice with an un-
ambiguous look-up table [MSS94a] and a threshold included in the
interval (0−1), extracting an iso-surface mesh with a restricted set
of facet normals. Even if we can merge all the adjacent triangles
laying on the same plane, as shown in Figure 8, the resulting mesh
is composed of a significant number of polygonal facets. The lattice

spacing is a function of the average edge length of the mesh multi-
plied by a user-defined parameter, which determines the “granularity”
of the final simplified mesh.

Figure 8: From left to right: the input model, the triangle mesh
obtained running DiscMC, and the polygon mesh resulting from
merging the adjacent triangles laying on the same plane. The meshes
are, respectively, composed of 3.628 triangles and 408 polygons.
Triangles and polygons are color-coded according to their normals.

3.2. Geometry

The main idea behind our method is to change signs in the regular
lattice in order to obtain a smaller number of polygonal facets when
re-running Marching Cubes on it. To this purpose, we introduce the
concept of Mask.

Mask It is a set of adjacent cubes having a specified combination of
signs on their vertices which generates a combination of adjacent
triangles by Marching Cubes that we do not want to have in our
output.

Every mask includes at least one set of Points of Interest represent-
ing the vertices which signs, once switched, simplify the resulting
mesh. Applying the masks, we enlarge broad facets and make small
facets disappear.

In Figure 9 there is an example of Mask. Four adjacent cubes
with specified signs on its points compose it, and it has two sets
of Points of Interest circled, respectively, in orange and cyan. Our
algorithm selects one of these two sets and switches it in order to
change the triangulation in two possible ways. We designed a basic
set of 18 different types of masks that, when applying rotations to
them, generate a total of 340 masks. We describe in detail all the
types of masks in the Additional Material.

As we have seen, for some masks there are different ways to
modify the local geometry using different sets of Points of Interest,
but we can choose only one set. We give priority to larger polygonal
facets, and to do this we need to keep track of the areas of each poly-
gon. We avoid to repeat this computation any time we change the
lattice, and consequently the mesh, introducing three data structures,
linked each other, containing:

• the lattice;
• the triangle mesh obtained running Marching Cubes;
• the polygonal set obtained merging adjacent triangles.
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Figure 9: In this example, we have a Mask (left) including a portion
of the lattice which generates a surface including two facets with
normal of type 1 adjacent to a facet with normal of type 2. Switching
the signs of the points circled in cyan or orange, respectively, we
obtain the configurations at the center or the right. We choose the
set of vertices to switch which favors the enlargement of the broader
adjacent facet.

Each cube of the lattice, once traversed by Marching Cubes, gener-
ates triangles and we keep cross-links between them. Every triangle
links to the polygonal facet containing it. Using the information in
the data structures, we can efficiently choose the Points of Interest
to switch. We choose the ones that link to the larger polygon, and
we modify only the involved polygons whenever a sign switches.
This approach guarantees that every switch of the sign is a local
operation on the mesh, with time complexity O(1).

Algorithm 1 Simplification Algorithm
Input: set of masks SM, inital lattice L
Output: simplified mesh M

1: procedure SIMPLIFICATION(SM,L)
2: M←MarchingCubes(L)
3: Link all M’s triangles to their L’s cubes
4: S← ComputeSegmentation(M)
5: Link all S’s polygonal facets to their M’s triangles
6: Push all L’s cubes in the queue Q
7: while Q is not empty do
8: c← Q.pop()
9: if c and its neighborhood matches with m ∈ SM then

10: SWITCHSIGNES(c,m,L,S,M)
11: Push all modified cubes into Q
12: end if
13: end while
14: return M
15: end procedure
16:
17: procedure SWITCHSIGNES(c,m,L,S,M)
18: P← getPointsOfInterest(L,S,c,m)
19: ∀p ∈ P, switch(p) in L
20: Update locally M and S
21: end procedure

A high-level view of our approximation approach is given in

Algorithm 1. We iteratively modify the geometry of the model by
putting all the cubes of the lattice not having all the eight vertices
equal in a queue. For each item in the queue, we first build all
the possible local configuration comparable with masks, using its
neighbors, and, then we perform a pattern matching against the set
of Masks.

When we find a match, we switch the best set of points of interest,
we update all the data structures, and we push back all the modified
cubes in the queue. This choice allows us to identify a local set of
triangles that was shifted away by the chosen mask. The process
ends when the queue is empty, or when we detect a loop. In the
latter case, the queue contains only the cubes generating loops. In
our experiments, loops always involve local configurations of signs
(and triangles) that with a sequence of sign switches leads to a
configuration already seen in a previous iteration. Our solution is
that any time we find a loop we pick the configuration with the less
number of flat polygonal facets. It is worth to remind that the result
of this approximation is a manifold and watertight mesh.

As shown in Figure 10, the output models of our approximation
method have small facets that connect large orthogonal facets. Even
when an input mesh presents some sharp 90◦ edges, the output of
our approach presents small facets which acts as a junction between
two orthogonal facets (see as an example Figure 16 a, e, f, k in
Section 6). Using the Marching Cubes algorithm, these features
cannot be avoided. However, one of the goals of our work is to
ensure an easy assembly process and these small facets contribute
to make it more challenging and error-prone. This problem led us to
introduce the interactive manipulation step described in Section 4
which aims to remove these unwanted features. The goal is to find a
result more suitable for our fabrication process and that is a better
approximation when the input model has sharp edges.

Figure 10: Dihedral angles of 90◦ cannot be obtained using the
Marching Cubes algorithm. There will always be small facets as
junctions between orthogonal facets. In most of cases, these facets
are not suitable for the proposed fabrication task and they could not
contribute for a better approximation.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



A. Muntoni, A. Scalas, S. Nuvoli, and R. Scateni / Simplification of Shapes for Fabrication with V-Groove Milling Tools

Algorithm 2 Removes a facet and expands its adjacent facets to
close the hole left by the deletion

Input: the facet to be removed f0
Output: the simplified mesh M

1: procedure FACETREMOVAL( f0)
2: Remove f0
3: b← all the facets adjacent to f0, in counterclockwise order.
4: t← CHOSESTARTINGTRIPLET(b)
5: while b contains more than two elements do
6: r1← getRay(t[1], t[2])
7: r2← getRay(t[2], t[3])
8: if r1 and r2 intersects then
9: if b has exactly three elements then

10: r3← getRay(t[1], t[3])
11: if r1,r2,r3 intersect in the same point then
12: closeTriplet(t)
13: end if
14: Empty b
15: else
16: closeFacet(t[2],r1,r2)
17: t← (t[1], t[3],b.next(t[3]))
18: Remove t[2] from b.
19: end if
20: else if |successive triplets with no intersection| < 3 then
21: t← (t[2], t[3],b.next(t[3]))
22: else
23: End procedure with error
24: end if
25: end while
26: if |b|= 2 then
27: Close the last couple of facets
28: end if
29: if |triplets with intersection| < 2 then
30: End procedure with error
31: end if
32: end procedure
33:
34: procedure CHOSESTARTINGTRIPLET(b)
35: for each fi in b do
36: r1

i ← getRay( fi,b.prev( fi))
37: r2

i ← getRay( fi,b.next( fi))
38: ivi← intersection between r1

i and r2
i

39: d← ‖ivi - the closest between r1
i and r2

i vertices‖
40: if d is the shortest found distance then
41: best← i
42: end if
43: end for
44: t← (b.prev( fbest), fbest ,b.next( fbest))
45: return t
46: end procedure

4. User-driven simplification

We have seen that the automatic approximation step keeps unwanted
facets in the model. Due to the highly variable nature of such facets,
we set up a Graphical User Interface for allowing the user to decide
which kinds of facet are unwanted. Our interest is twofold: in the
immediate, we needed a tool to massage our mesh and obtain a better
fabricable one; on the long run we have the aim of understanding
which aspects lead such a selection and thus formulate automatic
criteria. Such a tool requires to provide a speedy facet deletion
and mesh restructuring to keep the resulting mesh manifold and
watertight.

The facet deletion procedure is described in Algorithm 2. The
first step removes the selected facet. All the adjacent facets are
now unbounded. We take these facets and insert them into a
counterclockwise-ordered circular buffer. Note that, if a facet shares
only a vertex (and not an edge) with the selected facet, the facet
will not be considered adjacent. Each pair of adjacent facets in this
circular buffer generates a half-line (ray), obtained as the intersec-
tion of the planes lying on them, and its origin depends on the local
configuration of the involved facets. If the two facets were adjacent
also in the initial configuration, the origin of the half-line would be
the vertex not incident to the deleted facet. If the two facets were
not adjacent (as the green and red facets in Figure 11(a), they shared
only a vertex, and that vertex will be the origin of the half-line. This
is what is done inside the getRay function called in the algorithm.

Each triplet of facets defines a pair of adjacent half-lines. We
identify all the triplets that generate half-lines intersecting, and we
choose the one which intersection is closest to one of the vertices of
the deleted facet. We do this inside the CHOSESTARTINGTRIPLET

procedure. If less than two triplets generate intersections, this means
we cannot close the surface and, thus, we cannot remove the chosen
facet. The system reports this condition to the user.

If we can remove the facet, we add the selected intersection to the
new mesh, and we close the facet at the center of the triplet prolong-
ing its two edges which meet at the intersection point (expandFacet).
We then remove the facet from the circular buffer, and the two ex-
ternal facets of triplet become adjacent, generating a new half-line
with origin in the new vertex. The procedure iterates on the triplets
until completion. The process behind the deletion of a single facet
can be better understood looking at Figure 11.

There are three termination condition:

• there are only two facets left in the buffer;
• the last three (or more) facets in the buffer identifies lines inter-

secting on a single point;
• there are three successive triplets having no intersection.

Once the user select the facet, the system immediately outputs
one of two possible results:

• the closed surface without the undesired facet, or
• an error message which communicates to the user that it is not

possible to close the surface due to the local configuration of the
adjacent faces.

Our algorithm works correctly on facets with an entirely convex
or entirely concave neighborhood, and when the intersections do not
involve facets that are not adjacent to the selected one. This last case
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Deletion of a facet. After removing f0, we put all its adjacent facets in a circular buffer. We begin consuming facets in the buffer
selecting the triplet f1, f2, f3 since the intersection marked in red in (c) is the closest one. We reshape the central facet of the triplet ( f2) adding
the adjacent portion of the canceled facet, and we remove it from the buffer (d). The process is iterated for the next nearest intersection until
we assign all the portions of the canceled face and, thus, the surface is closed (f).

is complicated to manage due to the high variety of possibilities that
can happen. It is still an open problem for us, and we plan to tackle
it in the future. In the current application, we show an error message.
We show an example of facets deleted on the bottom of the Moai
using this approach in Figure 12.

The user can also select multiple adjacent facets and delete them
in a single step. This feature allows the simplification of shapes
having local configurations in which a facet has two adjacent facets
with the same normal but lying on different planes. In this case,
deleting only one facet would be impossible. The deletion algorithm
used is the same, and we show an example in Figure 13.

5. Unfolding the shape

The last step in our pipeline is the unfolding of the shape to be able
to carve the furrows on a planar surface. There are three types of
unfoldings: edge-unfolding, vertex-unfolding, and general unfolding

[DO08]. We perform the edge-unfolding of a polyhedron which we
cut along its edges and flatten into the plane in such a way that each
facet preserves the distances among its components. We are looking
for the net of a polyhedron, an edge-unfolding of a given 3D shape
which forms a simply connected polygon that has no overlapping
edges. In figure 14 we show the nets obtained for the two versions
of Moai before and after the user-driven simplification.

A 3D shape can be flattened onto the plane if and only if every
vertex has at least one incident cut edge, that is an edge where
the polyhedron is cut along when unfolded [DO08]. These edges
are a spanning tree in the 1-skeleton of the unfolded shape, that
is the graph formed by its vertices and edges. Thus each net of a
polyhedron has a corresponding distinct spanning tree of the graph.
There is a one-to-one correspondence between the spanning trees in
the 1-skeleton and the spanning trees in the dual graph (formed by
facets and edges of the shape). The edges in a spanning tree of the
dual graph represent the edges connecting the flattened polygonal
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(a) (b)

Figure 12: The Moai before (a) and after (b) the removal of some
facets from its bottom with our user-driven method. The quality
of the approximation does not change while the complexity of the
model decreases significantly.

Figure 13: Selection and deletion of two adjacent facets. The facets
cannot be deleted singularly due to the adjacency of two facets with
the same normal but lying on different planes. If selected together,
we can close the surface extending the edges of the adjacent facets
on the border of the two deleted facets.

facets in the net. In other words, they are are the edges that the
edge-unfolding process does not cut.

Unfortunately, it is not always possible to obtain an edge-
unfolding to a simple non-overlapping polygon. There does not exist
an efficient algorithm for determining whether or not a 3D shape
has a net since it is a combinatorial problem. Even the existence of a
net for one of the most straightforward categories of polyhedra, the
convex ones, has been an open problem since Shephard explicitly
posed in 1975 [She75].

For our purposes we do not necessarily need an edge-unfolding
to a single net; hence we can divide the 3D shape into components,
each of which unfolds to simple polygons (figure 15). Once manu-
facturing each piece separately, it is possible to glue them together
to reproduce the original shape. Given a polygon mesh M = (V,F),
we are looking for segmentation into the fewest number n of dis-
joint components Ci which we can unfold in a single piece with no
overlaps. More formally, ∀i, j ∈ {1, ...,n} such that i 6= j it holds
that:

Ci ⊆ F, Ci 6= ∅,
n⋃

i=1
Ci = F, Ci∩C j = ∅

Additionally, if |Ci| > 1 it holds that for each facet f ∈ Ci there
exists at least a distinct facet g ∈Ci such that f and g are adjacent
in the polygon mesh M. In other words, there exists a spanning tree
of the subgraph of the dual graph composed by the facets of Ci that
represents an unfolding to a simple connected polygon.

Figure 14: The two versions of Moai shown in Figure 1 (before and
after the user-driven simplification) unfolded. Top, before simplifi-
cation; bottom, after user editing.

(a) (b)

Figure 15: A polygon mesh for which a net does not exist (a) and
its unfolding in two components (b).

A segmentation for which all the components are unfoldable
without overlap always exists: the polygonal facets of the shape are
simple polygons. The extreme case is each disjoint piece containing
a single polygon which can unfold without any overlap. We look for
a solution with the lowest number n of components. Unfortunately,
we cannot determine the fewest number of parts that are unfoldable
to a net. Only for convex polyhedra, an upper-bound exists [Pin07].

We use a heuristic to obtain a low number of components. Our
idea is simple: given a polygon mesh, we incrementally flatten onto
the plane the highest number of polygonal facets that form a simply
connected polygon. The heuristic works as follows:
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Model # FAS # FUS Red. (%)

Abstract Sculpture 108 73 32.4%
Bimba 115 72 37.4%
BU 128 91 28.9%
Duck 41 16 61.0%
Egyptian Statue 293 99 66.2%
Fandisk 189 45 76.2%
Gentildonna 188 78 58.5%
Kitten 242 127 47.5%
Max Plank 67 36 46.3%
Moai 43 23 46.5%
Pensatore 113 88 22.1%
Sphynx 118 75 36.4%

Table 1: Number of polygonal flat facets in the approximate models
(# FAS) and after the user-driven intervention (# FUS). The third
column lists the percentage of reduction, in number of facets, after
the user interaction.

1. Pick a seed facet, its perimeter is the first boundary B of the
current unfolding U ;

2. Pick one of neighbour facets on B, say f ;
3. If f causes no overlap expand U to include f and update B;
4. Go to step 2.

We stop when it is no longer possible to expand U , and we obtain
a first component C1 ⊆ F . If C1 = F we have finished. Otherwise,
we pick another seed facet among the remaining ones, and we iterate
the process. To pick the neighbor facet, we follow a breadth-first
search approach. The seed facet is always the largest convex one (if
it exists). This method has the advantage of spreading in different
directions the growing polygon, causing relatively low overlaps and
producing unfoldings which are usually fitting in a rectangular sheet
with less possible scraps.

At each incremental step of the algorithm, we need to efficiently
test whether or not the edges of the current candidate facet are inter-
secting with an edge in the current unfolding. We use a data structure
which enables us to perform fast queries for 2D segment intersec-
tions and to add new elements efficiently. We use an auto-balancing
axis-aligned bounding box tree (AABB tree) that adapts very well to
dynamic contexts in which the data structure is continually changing,
and the objects are not often colliding [JTT01].

6. Results

We report several results obtained with our method in Figure 16. For
every model we shown the result obtained by the surface approxi-
mation in the center column, and after the user-driven simplification
in the right column. The number of polygonal facets of every result
is reported in Table 1. In Figure 17 we show some unfolded model
obtained with our method.

The approximation proposed in Section 3, as we have explained,
is strongly based on Marching Cubes and therefore, our method
guarantees all the properties that Marching Cubes guarantees on
its outputs: every presented result is a water-tight 2-manifold mesh,
with polygonal flat facets with normals that belongs to a restricted

and well-known set of normals. The method is very quick, we do
not report the times required for every approximate model because
they are always around ten seconds.

The user-driven simplification tool described in Section 4 is quite
simple to use for an expert user, and it required about 5 minutes to
produce every presented result. However, the simplification time
is only due to the user navigation: the most significant part of the
time has been spent searching for the undesired facets, while the
elimination and the expansion of the neighbors (or printing the error
message) is instantaneous.

The unfolding method described in Section 5 is always able to
produce a relatively low number of non-overlapping pieces that
can be reconstructed into the target physical object as we show in
Figure 17.

Our results are preliminary, and we still have to define how ac-
tually to fabricate them. We, unfortunately, do not have available
yet the machinery that we plan to use for carving the furrows in
plywood and cardboard.

7. Conclusion and Future Works

We proposed a novel method that enables the simplification of digital
shapes for an easy and quick assembly process after the fabrication
using CNC Milling and V-Groove tools. Our results are preliminary
and we plan to improve them in multiple ways.

Surface approximation. Interesting future work would be the def-
inition of a set of rules that automatically define the set of masks
necessary to do some operations. We also plan to exploit symme-
try, since now we do not guarantee to produce a symmetric output
starting from a symmetric input. A possible solution to the problem
would first automatically detect if the shape is symmetric with a
state of the art approach like the one presented in [PLPZ12], and
then applying the algorithm to half of the model, reflecting the other
in post-processing.

User-driven simplification. We want to add automatic criteria to
point to the user the faces he or she wants to select. We also plan
to improve the identification of a solution involving non-adjacent
facets. To reach this goal we need to take in account not only the
1-ring of the selected facet but an n-ring, where n is a parameter to
be carefully studied.

Unfolding. It could be interesting to find new algorithms to bet-
ter distribute the facets in disjoint components. Indeed, even if
the furrows made with V-Groove tools are very precise, the fabri-
cation process can be error-prone. Hence, the parts composed of
several polygonal facets are more sensitive to error propagation.
A study about the trade-off between the number of elements and
error-proneness would be needed.

So far, in our method, we have not taken into account the size and
the shape of the sheets used for fabrication. However, having this
information and the desired target object size, it would be interesting
to adapt our algorithm to pack the components into sheets of any
form, not only rectangular. We can take advantage of the dynamism
of our method: as we dynamically avoided the overlapping edges in
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(a) Abstract Sculpture (b) Bimba

(c) BU (d) Duck

(e) Egyptian Statue (f) Fandisk

(g) Gentildonna (h) Kitten

(i) Max Plank (j) Pensatore

(k) Sphynx

Figure 16: Results obtained with our method. We first process the input model (left) with our automatic approximation algorithm (center), and
then the user operates to remove the undesired facets with our interactive simplification tool (right).
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(a) Bimba (b) BU (c) Duck

(d) Fandisk (e) Egyptian Statue

Figure 17: Results obtained with our unfolding method applied on some simplified models in figure 16.

a net, we can analogously design a technique to build each unfolding
in such a way that it fits into a given 2D shape.

Toolpaths and fabrication. For manufacturing the results, it is
required an analysis of the processed unfoldings to generate the
right toolpaths. First of all, it is necessary to separate concave from
convex angles: the machine carves the former onto the top of the
sheet, and the latter onto the bottom. The second step is the grouping
of the edges by their dihedral angle, to sequentially carve them
with the right V-Groove tools. The toolpath also depends upon the
thickness of the sheet and the cutting height and diameter of the
tool.
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