Computers & Graphics (2018)

Contents lists available at ScienceDirect OMPUTER
&GRAPHICS

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Fabrication Oriented Shape Decomposition Using Polycube Mapping

Filippo A. Fanni?®, Gianmarco Cherchi?, Alessandro Muntoni®?, Alessandro Tola?, Riccardo Scateni®

“Department of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy

bVisual Computing Laboratory, ISTI-CNR, Pisa, Italy

ARTICLE INFO

ABSTRACT

Article history:
Received October 27, 2018

3D Meshes, Geometry Processing, Poly-

cubes, Fabrication

In recent years, fabrication technologies have developed at a breakneck pace. However,
some limitations on shape and dimension still apply both to additive and subtractive
manufacturing, and one way to bypass them could be the partition of the object to build.
We present here a novel algorithm, based on the polycube representation of the original
shape, able to decompose any model into smaller parts simpler to fabricate. We first map
the shape in a polycube and, then, split it to take advantage of the polycube partitioning.
In this way, we obtain quite easily a partition of the model. In this work we also study and
analyze pros and cons of this partitioning scheme for fabrication, when using both the
additive and subtractive pipelines. Our proposed partitioning scheme is computationally
light, and it produces high-grade results, especially when applied to models that we can

map onto polycubes with a high compactness value.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The introduction of cheap and small 3D printers has boosted
the research in the field of digital model representation for fabri-
cation. Novel algorithms and techniques flourished to let almost
everybody reliably 3D print accurate and cheap reproductions of
digital objects. At the base of this explosion, there are many man-
ufacturers which are selling low-priced entry-level 3D printers,
leading to a sound diffusion between hobbyists. As smaller and
cheaper a 3D printers is, as fewer functionalities and features,
compared to the high-level ones, it has. A noticeable differ-
ence is the size of the printing chamber (the maximum printable
volume). The only possibility to print big objects is, thus, to
decompose them into multiple portions, print them separately
and, later on, reassemble the object.

Besides 3D printing, that we can call Additive Manufacturing,
a different approach to the fabrication of digital shapes, usually
called Machining or Subtractive Manufacturing, has a broad
diffusion in the field of mechanical engineering. This latter
approach makes use of CNC milling machines and has been
routinely used since decades in the industry, to fabricate parts
out of metals blocks or, sometimes, other materials like wood

or foam. As with 3D printing, the dimension of the object can
be a constraining factor, which we can address with the same
techniques.

In both 3D printing and machining, other essential constraints
apply to the shape of the object, and a way to bypass them is to
subdivide the object into pieces that satisfy the required features:

e a 3D printer cannot produce, without introducing extra-
structures - the supports -, parts with an overhanging larger
than a fixed amount, usually set at 45 degrees;

e a 3-axis milling machine can produce only parts which are
height-fields with a flat base;

e a 4-axis milling machine can produce parts which are radi-
ally height-fields but machining a piece at a time.

A solution to this class of problems is a shape decomposition
guided by the above constraints and size constraints. One can
obtain a straightforward decomposition using cutting planes to
fit each part in size, but it would probably be meaningless in
shape. Moreover the cutting planes are keen to cut other portions
of the shape in an uncontrolled way. On the other hand, it could
be difficult to control the size of parts obtained using fancy

2 Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018)

g

Input
shape

Polycube
mapping

e

Polycube
decomposition

Fabricated
shape

Shape
decomposition

Fig. 1. Our pipeline, from left to right: the mesh representing the input shape; the polycube computed from the input model; the polycube decomposed in
orthogonal parallelepipeds with our sweeping algorithm; the decomposition mapped back onto the input shape; the final fabricated real object.

and efficient decompositions which take into full account the
semantics of the shape.

We propose here a simple and low-cost - computational wise
- approach to the decomposition of a three-dimensional shape
which passes through its parametrization in polycube space.
Polycubes are simple polyhedra composed only of orthogonal
faces. This compact representation of a mesh has been proposed
first by Tarini et al. [1], to obtain a seamless texturing. Poly-
cubes have to respect three main constraints: axis-aligned faces,
only 90-degree dihedral angle and integer coordinates. These
restrictions cause the polycubes to be a simplified representa-
tion of the original mesh which can catch the low-frequency
semantics of the shape. Using the state-of-the-art polycube gen-
eration software Polycut [2], we can control the decomposition
of the input shape fine-tuning the parameters which determine
the compactness and fidelity of the result. This choice allows
us to produce decompositions in a time varying from seconds to
few minutes, letting us converge timely to the desired solution.

Our main contributions are as follows:

e A pipeline to obtain an object decomposition that is guaran-
teed to be printable with a 3D printer of a given chamber
volume without or with reduced use of supports.

o A checker to verify if the obtained decomposition could be
milled using a 3-axis or a 4-axis milling machine.

It is worth to mention again that our pipeline strictly relies on
the preliminary decomposition induced by the polycube map-
ping. Without an efficient polycube generator, the whole process
does not hold.

We presented preliminary results in “Polycube-based Decom-
position for Fabrication” [3]. In this new article, we propose a
substantial improvement of the previous partitioning pipeline
and a new result set.

2. State of the art

Our work and analysis are related to different research topics
that we cover separately in the following sections.

2.1. Polycube maps

Polycube maps offer a compact and simplified representation
of a digital model, using a set of face-connected orthogonal par-
allelepipeds. The polycube map is a bijective mapping function
between the original model and the polycube space so that every
vertex, triangle (and tetrahedron, in the volumetric case) of the
model is mappable onto the polycube. As a consequence, it
is possible to modify the polycube’s elements, and, then, map
back the result to the original model. A significant advantage of
this approach is that every single part of the decomposition is a
parallelepiped, all the dihedral angles are right, and the modi-
fication is simple and efficient. Its original usage, proposed in
[1] exploits this property using the surface of the polycube as a
domain for texturing the object. When the polycubes offer a low
distortion mapping, this technique is efficient and has almost no
drawbacks.

Polycube mapping can apply to trivariate spline fitting, volu-
metric texturing and hexahedral meshing. By its very nature, any
polycube can be trivially gridded, obtaining an utterly regular
hex mesh [4]. If we extend the polycube mapping to the whole,
volumetric, domain, it is possible to map this hex mesh to the
original shape. The resulting hex mesh is highly regular (with
the topology computed on the polycube parametric space), and
its quality depends on the polycube mapping, with each corner
in the polycube mapped back to the hex mesh as a singularity.

2.1.1. Polycube-map construction

There are several algorithms in literature for creating poly-
cubes, each one addressing specific characteristics. In 2008
Lin et al. [5] proposed the first automatic algorithm for poly-
cube generation. In 2009 He et al. [6] proposed an alternative
method, based on the principle of Divide et Impera. Gregson et
al. in 2011 [7] analyzed the problem of computing hex meshes
using the polycube parametrization. To do so, they developed
a Deformation based approach to create polycubes. In 2013
Livesu et al. [2] proposed an approach (Polycut) based on the
use of a graph-cut classification of the triangles of the mesh,
followed by an hill-climbing optimization of the boundaries. In
the algorithm one can set a single parameter to tune the fidelity
vs. compactness trade-off, thus allowing for several possible -
coarse to fine - polycube mappings. Another approach is the one

Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018) 3

by Huang et al. in [8]: they obtain polycubes aiming to keep
low the distortion and the corner count. In our work, we use
PolyCut for generating the polycube maps, but any other method
can produce our input polycubes.

More recently another work focused on polycube post-
processing. Cherchi et al. [9] in 2016, proposed a shape op-
timization, beneficial for the analysis presented in this paper.
This work introduced an algorithm to align polycubes’ singu-
larities. A polycube of “good-quality”, with a low number of
corners and proper alignment of singularities is very helpful in
our work.

2.2. Fabrication

Fabrication is a fast emerging field of research in geometry
processing. It collects the study and implementation of all the
processes and techniques that can be used to produce real ob-
jects from digital models. The most relevant technologies are
but are not limited to, 3D printers and CNC milling machines.
These represent two different approaches to fabrication, usually
referenced as additive and subtractive manufacturing.

Research in the fabrication field is mostly related to additive
manufacturing, while a few works address subtractive manu-
facturing. We will briefly review the most relevant literature
regarding both topics.

2.2.1. Additive manufacturing

Additive manufacturing (or additive fabrication) makes use
of machines that build the final object layer by layer. These
machines are the 3D printers, and they can use multiple mate-
rials. The most common printers use thermoplastic polymers
and deposit the fused filament to build the layer. However, other
technologies are available to use other materials, such as liquid
resins, metals, and various powders.

This kind of manufacturing does not impose any constraint
on the model’s shape. However, some models require external
support structures, as 3D printers can not directly print steep
overhangs or islands (see Figure 2). One has to remove these
structures manually after printing, and in an industrial context,
they represent a significant waste of material and time. To avoid
this waste Hu et al. proposed in [10] an algorithm to subdivide
the model in approximate pyramidal shape, printable without
supports. Herholz et al. in [11] suggest a similar approach,
by exploiting the surface deformation to reduce the number of
pieces.

h
self- supportmg over anglng

‘\ |]

Fig. 2. Islands and overhangs need external support structures.

The hardest constraint imposed by 3D printers regards the size
of the object, as it is undoubtedly impossible to print anything
greater than the printing chamber. The solution to this problem
is, again, to partition the model into smaller portions, print them,

and reassemble them back. Many works that face this problem
appeared in the last years, and the most remarkable ones are
in [12], [13] and [14]. The algorithm proposed by Song et al.
in [13] creates self-interlocking structures, to avoid the use of
glue or connectors, and it obtains a stable structure that can be
disassembled and reassembled multiple times. The algorithm
proposed by Hao et al. in [14] tries to minimize the aesthetic
impact of seams. Lastly, the algorithm proposed by Luo et al. in
[12] generates a partitioning of the input model that optimizes a
set of objective functions, including printability of every block in
the working volume, assemblability, avoiding small blocks and
optimal position of the seams (both for aesthetics or structure).
They subdivide the model using cutting planes, and a BSPTree
gives the order of cut. This approach does not allow to keep
apart semantically separate portions of the object. Furthermore,
they don’t consider the supports that are necessary to print every
block of their partition, which can complicate the assemblability
due to the presence of connectors in the planar portions of the
blocks. An extensive discussion on pros and cons of additive
fabrication, partitioning and related issues can be found in the
survey of Livesu et al. [15].

2.2.2. Subtractive manufacturing

Subtractive manufacturing, also known as machining or sub-
tractive fabrication, consists in removing material from a starting
block until only the desired shape is left. CNC milling machines
have a crucial role in mechanical manufacturing since decades,
but only recently experiments on automatic free-form shape
production started.

Milling, unlike 3D printing, enables manufacturing objects
with a large variety of materials, like wood, metal or stone. De-
spite this significant plus, the usage of subtractive techniques for
free-form production still struggles in the digital fabrication field,
due to the hard constraints that they impose on the geometry of
the objects. There are three main categories of milling machines,
which differ for the degrees of freedom of the milling tool.

3-axis. The most diffused, inexpensive and easy to use milling
machines can move their tool on the three axes of the Cartesian
system and, thus, they have three degrees of freedom. These
characteristics limit the class of objects they can produce: mil-
lable shapes can be only height-fields with flat bases. In other
words, each line parallel to the z axis can cross the shape only
once, as shown in Figure 3. Even if there is a vast bibliography
on the production of mechanical parts with CNC manufacturing,
there is still limited literature on the subject of decomposing
generic free-form shapes into a set of millable parts. Alemanno
et al. [16] define a user-assisted method for decomposing 3D
shapes into height-field in the domain of cultural heritage. Their
method is manually driven and overlaps between pairs of blocks
are resolved using an interlocking zipper pattern. Herholz et
al. [11] use 3-axis milling machines to create millable molds.
These molds can be used to obtain the final model by solidifying
a liquid material which decants inside the glued molds. Muntoni
etal. [17] perform a decomposition in height-field blocks that
can be manufactured in a single pass with a 3-axis milling ma-
chine, using a fully automatic algorithm in two steps. They first
identify all the bounding boxes containing height-fields and then

4 Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018)

select a subset determining a partition of the input shape. As
they explain, a geometry manufacturable with a 3-axis machine
must respect several constraints (such as height-field geometry
w.r.t. a given direction, flat polygonal base, etc.). Our work does
not focus on complying with these constraints. We first obtain a
decomposition of a 3D digital model induced by its polycube,
and then we analyze every piece of the decomposition. This
analysis also includes a check for the manufacturability of the
part with a 3-axis milling machine.

o

undercuts base not flat

|Vé_\ljz| ‘ |\I : (\ \‘ 1}| ‘\‘ \I/HI*:_“\|

Fig. 3. The model on the left is millable (it is a height-field); the model in the
middle is not millable (it is not a height-field and, thus, it has undercuts),
the model on the right is not millable even if it is a height-field because its
base is not flat.

4-axis or more. More complex machines have higher degrees
of freedom, typically moving the tools over four, five, and six
axes. These devices impose looser constraints over the machined
shape, but, at the same time, they are more expensive than the
3-axis ones, and they require more sophisticated software and
analysis which enables the automatic generation of tool-paths.
Typically, in fact, the user generates the tool-paths manually
based on his or her own experience. It is also possible to add
accessories to a 3-axis machine having a 4" degree of freedom
given by the rotation axis. This add-on is quite useful since a
4-axis machine can produce all the models that, given a rotation
axis, exposes every point of the surface in at least one rotation.
This constraint is weaker than the one imposed by the 3-axis ma-
chines. Recently Hou et al. [18] improved the results obtained
previously by Frank et al. [19], and using the global visibility
map (GVM) of the shape can determine the best rotational axes
for machining it. The authors show results obtained on mechani-
cal parts and the computational effort reported is in the order of
tens of minutes for shapes just more complex than a cube with
pockets. Their approach is more exhaustive than our proposed
checker but far more expensive in time.

3. Problem overview

The goal of our work is to decompose complex models into
simpler parts that better suit limitations in current fabrication
processes, both additive and subtractive. We do this computing
the polycube map of the shape, splitting the polycube in or-
thogonal parallelepipeds, and mapping back this partition in the
original model. This process allows us to have a set of smaller
parts to manage, each one of them with desired features.

As well stated in [15], when planning the production of an
object in additive manufacturing, it is possible to decide to par-
tition the object into multiple pieces. This partition can be due
to multiple reasons, but one of the most common situations is
when the object is greater than the printing chamber.

We propose an alternative way of partitioning the shape. Our
method is conceptually simple if a polycube map is available
for the input shape. We then induce a partition on the shape
using this map, smartly and efficiently. In our experiments, we
show the proposed method worked satisfactorily for a variety of
examples (see Figure 7).

Our work requires only one parameter: the compactness vs.
fidelity term of Polycut for building the polycube. Furthermore,
we try to partition the shape keeping in mind the requirements
of both additive and subtractive manufacturing.

Our proposed production pipeline can be summarized as fol-
lows:

1. We start from a 3D input shape (a triangle mesh represent-
ing the surface of the model and a tetrahedral mesh of the
interior)

2. We compute its representation in polycube space

We partition the polycube in orthogonal parallelepipeds

4. We use the partition computed at step 3. to subdivide the
original model in shape space using Boolean operations

W

All the steps listed above are fully automatic. If the results do
not respect the constraints (45 degrees maximum overhang for
printing and height-field for milling), we can readily repeat the
last step after manually splitting one or more parallelepipeds in
polycube space with a plane orthogonal to the Cartesian axes.
The splitting is trivial working in polycube space.

The following sections explain the third and fourth steps of
this pipeline which are the primary focus of this work. In Figure
1 there is a sketched representation of the pipeline.

The third step of the pipeline explained in details in Section 4,
takes in input the topology of the polycube and, using a queue-
based sweeping algorithm, outputs its partition in orthogonal
parallelepipeds.

The fourth step (Section 5) maps back each parallelepiped
found in the previous step to parts of the original model. We
cannot use a simple mapping since it would not produce the flat
surfaces we need. We, thus, use the boxes as parameters for
intersections with the original shape. The final result is manually
evaluated to verify if one or more parallelepipeds needs further
partitioning step.

4. Polycube partitioning

As shown in the inset, in the polycube, we call cor-
ner a vertex with at least three adjacent triangles (or faces)
having three different normals and edge the shortest rec-
tilinear path of triangle edges that connect two corners.
We call facet a closed chain of
edges and corners containing a set
of triangles with the same normal.
For the following steps, we can
ignore the triangle mesh structure
and focus only on these elements.

The primary step of our p
pipeline is the decomposition edge
of the polycube in orthogonal
parallelepipeds. We follow the idea that every concave edge

corner
S

~facet

Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018) 5

in the polycube defines a partial decomposition of the model.
Since every edge is axis-aligned, it lies at the intersection two
planes parallel to xy, yz or zx. By construction, the two planes
are orthogonal. The intersections between the two planes and
the polycube induce the partial decomposition we mentioned
before. Iterating the decompositions obtained visiting all the
concave edges we obtain the decomposition in orthogonal
parallelepipeds of the input polycube.

We, first, make sure that each corner coordinates is rounded to
integer values. In this way - fitting the polycube into an integer
lattice - it is simple to create a uniform discrete grid inside the
polycube.

We apply a sweep line algorithm along all the three axes, and
we split the lattice at every concave edge. In Figure 4, for the
sake of compactness, we represent both steps as they were only
one pass; notice that we evidence the concave edges marking
the explementary convex angles.

This method works fine for all polycubes except for self-
intersecting ones. In our experiments, however, we never experi-
enced any case of self-intersection, confirming our intuition that
those cases should be extremely rare in the class of polycubes
that is relevant in practical scenario.

We are now ready to compute the cutting planes. We apply
the back mapping - from polycube back to the original shape
- only to each part’s corner. Since we have at our disposal the
tetrahedrization of the original shape and the polycube, we rely
on them for this mapping. For each corner P (x,y,z) on the
surface of the part we determine in which tetrahedron of the
polycube it lies, indexing them using an octree, and expressing
its position in barycentric coordinates: wy, wy, w;, w3. We then
compute the new corner position P’ applying these barycentric
coordinates to the tetrahedron in the original model. If A, B, C, D
are the vertices of the chosen tetrahedron, we have that P/ =
wo-A+w;-B+w,-C+ws-D. The computational complexity is
O(n. -log(n,)), where n, is the number of corners in the polycube
portions and r;, is the number of tetrahedra in the original model.

In this way, we identify a set of eight vertices for each internal
parallelepiped of the polycube. We can now compute, for each
quadruple of vertices on a face of the parallelepiped, the plane
that better approximate them and, repeating it for all the internal
parts, obtain the set of cutting planes. We further explain this
step in the next section.

5. Cutting planes

To be able to fabricate each part of the decomposed model,
as it will be evident in the next section, it is beneficial for 3D
printing, and mandatory for 3-axis milling to have at least one
side planar. With the word side here we mean the set of triangles
mapped from one facet of a parallelepiped. It’s worth to remind
that in polycube space since each component is an orthogonal
parallelepiped, each face is a planar rectangle. To map back the
parallelepiped in R? we use the inverse function of the projection
in polycube space. This inverse function only seldom maps a
rectangle onto a planar portion of the surface: almost always the
four vertices of the rectangle do not lie on a plane. We, thus,
modify the position of these four vertices so that they will lie

Fig. 4. The space sweeping partitioning of the polycube. We depict here
a step in the direction marked by the arrow (top-down): any time we en-
counter one or more edges delimiting an internal concave angle (for the
sake of understanding we mark, in red, the explementary convex angles)
we split the polycube complex.

on a plane and call this step flattening. We are not allowed to
change the position of the mesh vertices on the original surface
of the input shape, of course, since we do not want to deform
the input shape.

To reach our goal we use an iterative method that works in R?
using the topology of the polycube and, thus, in the following,
we use the term side instead of facet for making this clear. It
works as follows, using only a queue @ as the data structure to
support the process:

1. Pick an external side of the model

2. Check if one or more of the other five sides of the same
parallelepiped are internal sides

3. Put all the internal sides found in Q

4. Take the first side in Q, say f, flatten it and remove it from
Q

5. Move to the parallelepiped incident on f not already visited
and go to step 2

The process ends when we have visited all the cubes and Q is
empty.

5.1. Side flattening

We use different approaches to flatten a side, depending on
how many vertices are free to move. If all the four vertices are
free to move (e.g., for the very first side to flatten) we apply a
least square method to find the best fitting plane, and we project
the four vertices on it. There are two more possible cases: (i)
two vertices can move only on a given plane; (ii) one vertex

6 Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018)

can move only on a given line. In both cases, the solution is
straightforward. Finally, consider that when we flatten sides
neighbor to already flat ones since we cannot move the edge in
common, we use it as a pivot and allow the other two vertices
only lay on a plane passing through the pivot.

In figure 5 we illustrate the whole process on a simple
example that, for simplicity, is in polycube space.

starting
face :
h

LI T T Iel] QLI T Ial 1]

e ok

Aelslal T 1] Qfelsl T 1.1]

=

/- AARAARN ol

Fig. 5. From left to right and top to bottom we can follow the whole process
of flattening. The vertices to be moved are the ones marked in yellow, once
fixed they are marked with a yellow square.

6. Final decomposition

Once we have detected all the cutting planes onto which the
internal faces lie, the last step is the definition of the geometry
of each part of the partition in order to proceed to the fabrication
feasibility analysis. To perform this refinement we use exact
Boolean operations as described by Zhou et al. in [20], which
permit to obtain the surface mesh resulting from a Boolean oper-
ation (intersection, union, difference) of two surface meshes. We
obtain the final geometry of the part performing an intersection
between the surface extracted from the input triangle mesh and
a box enclosing the part. The boundaries of the enclosing box
are given by the cutting planes of the part and the bounding box
of the whole mesh.

If the cut results in more than one connected component, we
select only the component containing the four vertices generat-
ing the cutting plane, and we ignore the other cuts. Each portion
stems from a single orthogonal parallelepiped of the polycube,
and therefore it can be trivially split - if necessary - using an ap-
propriate axis-aligned plane that will map back onto the original
shape. The result of this final step is a partition consisting of a
set of triangle meshes.

7. Feasibility checking for fabrication

7.1. 3D printing support control

We can fabricate each piece of the resulting partition with a
3D printer since we used the chamber size as a control in the last
step. We focused our feasibility check on the usage of supports.

Our algorithm is guaranteed to generate a set of pieces hav-
ing from one to six flat polygonal facets. For each piece, we
automatically check all the possible printing directions - one
to six - given by its bounding cutting planes, and we select the
printing orientation that gives the best results in terms of needed
supports. The best orientation is the one with less surface tri-
angles exceeding the overhang angle of the 3D printer. Since
the number of cutting planes bounding a piece is at most six,
the overall complexity of the check is linear with respect to the
triangle number of the piece. We analyze the results in the next
section.

Note that, as we stated in Section 6, with our algorithm we can
split a piece with a new cutting plane if the volume of the part
exceeds the chamber size. This operation permits also to avoid
any outer supports iterating this split step until having only parts
not needing supports. This splitting we add a new flat base to
each of the two new pieces - one of them has already a flat face -
allowing to choose a new printing direction for both pieces.

7.2. 3-axis milling checking

While for 3D printing we can guarantee results, for milling we
are only able to perform a check on the obtained decomposition
to verify the fabrication feasibility. We devised two checking
procedures which allow to determine whether a given block
can be manufactured with both 3- and 4-axis machinery. The
3-axis milling checker is very simple: it just checks if a piece
of our decomposition is a height-field. The milling direction is
orthogonal to one of the cutting planes, and, again, at most, we
perform this check six times per piece. We orient the piece in
all its possible milling directions and, for every orientation, we
check if it has triangles having normal with an angle greater than
90° for the milling direction. We exclude from the check all the
triangles which belong to the polygonal base generated by the
selected cutting plane.

7.3. 4-axis milling checking

We introduce a method for checking if an individual part
of an object can be feasibly machined with a 4-axis milling
machine. One of the main challenges for the fabrication of
an object with a 4-axis milling machine is the identification
of the rotation axis. This problem has been achieved by [18],

Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018) 7

but they focus the study mostly on mechanical and very reg-
ular objects with a low number of triangles, emphasizing that
the computational effort dramatically increases if the visibil-
ity resolution raises. We focus on free-form geometries and,
thus, the more reasonable solution is to leave the user to choose
the rotation axis, assisted by an automatic initial orientation of
the model. We derive the suggested orientation as explained
in [17], maximizing the alignment between the global axes
and the face normals of the shape. As shown by [17], since
this method is a heuristic it can fail. As we show in the inset,
the rotation axes automati-
cally detected for BU (left)
is skewed while the manual
choice of taking the verti-
cal line passing through the
center of the base (right) is
the correct one. Therefore,
we provide a tool that al-
lows the user to adjust the
orientation if he deems it
necessary. This is the only
user-controlled step of this checker.

A surface can be (theoretically, see the end of section) manu-
factured using a 4-axis milling machine if the milling tool can
reach every surface point considering all the possible rotations
of the model along the selected rotation axis. Since all the possi-
ble rotations along the 4th axis are infinite, once we choose the
rotation axis, we sample with a small set of angles that generates
a family of planes which intersect each other along the selected
axis. We, then trace, for each triangle and at every rotation of
the model, a ray orthogonal to the plane associated to the i-th
rotation and passing through the barycenter of the triangle. If the
ray intersects more than one triangle, we mark the farthest away
from the plane as visible from the milling tool and, therefore,
millable in the present orientation.

Fig. 6. Three main possible cases of ray-triangle intersection.

As you can see in Figure 6 we can have three primary cases:
e In case (a) the ray traverses only one triangle.

e In case (b) the ray traverses a whole portion of the shape
and two triangles (one front-facing and one back-facing the
milling tool).

e Case (c) is an example of summation of both previous
cases, that can sum up even more; in all these cases the ray
traverses three or more triangles.

In the two cases sketched in Figure 6.5 and in Figure 6.c we
have triangle belonging to the surface and not directly reachable
by the milling tool. If this happens, we need to verify if for some
rotation angle the triangle could be visible. We cannot mill all

the triangles never visible. Either we change axis, or we remove
them from the surface filling the holes with a mesh repairing
tool.

Checking the visibility of the barycenter is an approximation.
If the barycenter is visible, it does not guarantee that the entire
triangle is visible from the milling tool. However, this approx-
imation is good enough for our purposes because in the worst
case we lose precision for portions of triangles. In our experi-
ments, these problems never appear. We tested our checker with
oversampled meshes (keeping the same geometry but doubling
or tripling the number of triangles), resulting with the same per-
centages of samples visible/not visible, with minimal differences
(less than 0.1%).

As mentioned before, the selection of the rotation axis is user-
assisted. The sampling number is an input parameter. In our
experiments (the results are in Table 2) we used forty rotation
planes uniformly distributed in the interval [0, 27).

The whole checking process does not take into account some
practical details like the thickness and the height of the milling
tool. They depend on the machine used for the manufacturing
process. Even if these are essential aspects for the real feasibility
of the fabrication of the pieces, they can be integrated into the
checker using a configuration left to future extensions.

8. Results and analysis

We applied our pipeline to an extensive set of models, having
different characteristics in term of details and complexity. We
show a gallery of our results in Figure 7. Other peculiar or
fabricated results are reported and commented separately (e.g.
see Figure 9).

The polycube of each model is an input for our pipeline and,
thus, to make their production process clear, in Table 1 we report,
for each model, the compactness factor used to compute these
polycubes with Polycut, with the number of resulting orthogonal
parallelepipeds. The number of parallelepipeds in the polycube
is the number of parts of the decomposition since we do not use
any merging post-processing step. We do not report the timing
for the cutting planes calculation because they are negligible
(always less than a second). We also do not report the timing
for polycube computation and for the generation of the pieces
using exact Boolean operations since we use external tools for
these steps. To give an idea of the order of magnitude, the com-
putation of the polycube map never exceeds three minutes, and
Boolean operations always stay under one minute, for all models
except for Fandisk. The longest step of the whole pipeline is
the polycube computation, that is the pre-processing step. The
entire timing is, by no means, a problem when compared to the
fabrication time.

We do not assure that our partition is optimal in term of
the number of parts, but it is unquestionably easy and fast to
compute. We do not propose, in fact, to improve in absolute the
results in [12], but we suggest how it can be possible to partition
a mesh for fabrication purposes with a simple method controlled
by the user and using just one parameter in the whole pipeline
(the polycube compactness). Our work gives excellent results in
efficiency.

8 Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018)

Model Polycube Parts
compactness
Angel 5 4
Bird 4 5
Bu 9 9
Dea 7 4
Duck 5 5
Fandisk 4 50
Hole3 3 18
Max Plank 7 3
Moai 3 9
Ramses 9 9
Sphynx 10 6
Squirrel 3 4

Table 1. Results of the polycube computation on the models used in our
experiments. We optimize the polycubes with the algorithm presented in
[9]. The second column lists the compactness values of the polycubes.

The compactness of the polycube influences our final decom-
position. The use of optimized polycubes as described in [9]
leads to a better result, with a sound reduction of small and not
semantically relevant pieces.

8.1. Partitioning in additive manufacturing

Since the partitioning allows the complete model to be larger
than the printing chamber, with our pipeline, it is possible to
print almost any free-form shape, using supports to handle over-
hanging features.

For every part of our partition, we analyzed the surface per-
centage needing support during the fabrication. The base for
the printing is the flat face giving the lowest percentage. We
analyze our results comparing the percentage of the surface of
the whole mesh needing supports with the percentage of sur-
face needing supports in our decomposition (Table 2, columns
%3DPST and %3DPPST). Our decomposition allows fabricating
the final model guaranteeing to have less percentage of surface
needing support. Additionally, since the seams between pieces
are planar, we can guarantee that the matching areas are as reg-
ular as the production process allows, and, therefore, the parts
accurately match during the assembly.

8.2. Fartitioning in subtractive manufacturing

Subtractive technologies impose stricter constraints on the
model shape. For 3-axis fabrication, our polycube-based de-
composition does not always produce a suitable partition. Even
if we have flat faces, we cannot guarantee that the pieces are
height-fields. Testing our 3-axis milling checker on our results,
we verified that the height-field constraint is too hard to respect
without taking into account specific precautions during the de-
composition. As we can see in Table 2 (column %3AM), only
five pieces of our decompositions (two belonging to the same
model) have tiny percentages of surface that cannot be reached
by the milling tool because occluded (less than 3%). These
pieces can be manufactured using 3-axis milling machines, at
the cost of losing the details of the occluded parts and, in some

cases, introducing discontinuities between adjacent blocks if the
occlusion involves one of the flat faces of the block. However,
no pieces of our decompositions are strictly height-fields, and
none of our results is composed only by pieces with negligible
percentages of non-millable surface. This is a limitation to our
method, and in Section 10 we propose some possible solutions
to it. We compare two of our results with [17] in Figure 9. Our
method guarantees a regular decomposition inherited from the
polycube partitioning, where every block can be produced with
4 axis milling machines or 3D-printed without supporting struc-
tures. On the other hand, the method proposed in [17] guarantees
blocks that can be milled using 3 axis milling machines..

The use of 4-axis machines allows for more flexible con-
straints but requires to identify first the rotation axis. Using
the checking procedure described in Section 7 we demonstrate
the feasibility of almost all the parts obtained from the experi-
mented models. The results show that the machining tool cannot
reach only a limited percentage of the surface (Table 2, column
%4AM). In Figure 8 we show the chosen axes that would guar-
antee the fabrication of each piece of the Duck (note that this
model cannot be fabricated with the 3-axis technology). All our
results use the hypothesis of an ideal machining tool of indefi-
nite length and infinite narrow size. Should one manufacture the
parts, it would require to revise the checking procedure to take
in account size, length, and shape of the tool. The change would
not substantially modify the results.

8.3. 3D printing examples

We fabricated some of the computed decompositions using
additive manufacturing.

We fabricated five models: Duck, Sphynx, Angel, Max Plank,
and Squirrel. These models have different polycube mappings,
all very simple and they decompose, respectively into five, six,
four, four, and three pieces (see img:mosaicFigures 7, 11, and 1
for the decompositions). Photos of the models of the Duck and
Angel are in Figure 10. In Figure 12 we show photos of Max
Planck with the total height (24.5 cm) shown. The chamber of
our 3D printer, a Flashforge Creator Pro, is 227 x 148 x 150
mm, and thus it could not be possible to print the model in this
size without decomposing it. Furthermore, a large number of
external supports would have been necessary to fabricate this
model without partition it.

9. Limitations

The polycube-based partitioning is not well suited when used
to decompose models with large almost flat surfaces not orthog-
onal. The Fandisk model, for instance, is quite regular and
straightforward but, due to its geometric features, decomposes
in 50 portions (see Figure 13). This characteristic is a drawback
when compared to pure semantical approaches. As an example,
a manual segmentation can easily partition the fandisk in much
fewer portions. But the fully automatic pipeline still makes our
approach advantageous on models without these characteristics.
Since we use optimized polycubes, we decompose in as few
parts as possible, but we can still produce some small pieces
as one can notice in the Ramses model of Figure 7. Another

Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018) 9

. Max Planck
3 parts

‘

). | Ramses (A% x : ey i ! | .
=5 9 parts : 3
' - - ' {
- 9 parts N
N 1 A
3 j hat 1P 2 g Bird

\vﬁ‘ﬁ y M 5 parts

Fig. 7. For each shape, on the left the whole partitioned model, and, on the right, its exploded view.

/

)

Fig. 8. The five parts of the Duck model decomposition, all with at least one
flat face. The red cylinder is the rotation axis used for the 4-axis milling.

x
!

Fig. 9. Decompositions of Dea and Bu models obtained with the the method
of [17] (left) and with our method (right).

Fig. 10. The models of Duck and Angel. On the top left the five printed
parts of the Duck, and on the top right two views of the assembled model.
On the bottom left the four parts of the Angel, and on the bottom right the
assembled model.

Fig. 11. The Sphynx model, from left to right: the polycube mapping; the
partitioned model; the exploded set of parts; the ABS model.

10 Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018)

Model %3DPST BID %3DPPS %3DPPST %3AM %4AM
0 00 137 00
1 0.0 412 01
Angel 4.6 2 0.0 0.0 177 0.0
300 20 00
0 00 453 0.0
1 0.0 29 00
Bird 20 2 00 0.0 447 00
300 166 0.0
400 448 0.0
0 178 475 00
1 5.0 169 00
2 53 27 0.1
3 59 288 0.0
Bu 118 4 1.8 10.1 361 0.0
5 15 480 0.1
6 29 127 01
7 46 94 00
8 39 116 00
0 00 396 0.1
Dea w7y 90 006 2 0%
300 03 00
0 30 379 0.0
1 0.0 325 0.0
Duck 145 2 00 0.7 04 00
300 141 00
400 234 00
0 00 62 00
Max Plank 217 1 0.0 0.0 326 0.0
2 00 31200
0 00 116 00
1 0.0 213 0.0
2 00 18 00
300 288 0.0
Moai 60 4 05 0.1 239 00
5 00 22 0.0
6 00 198 00
700 71 05
8 00 300 2.4
0 1.7 482 0.0
1 0.0 166 00
2 06 164 00
3 43 234 00
Ramses 3.0 4 0.0 1.8 234 0.0
5 14 340 0.0
6 06 369 0.0
7 30 288 0.0
8 00 207 0.0
0 00 294 09
1 0.0 209 0.0
2 05 309 0.1
Sphynx 9.8 3 0.0 02 377 04
400 126 0.0
5 00 243 0.0
0 00 301 06
Squirrel 08 1 0D 0.0 w603
300 237 00

Table 2. Summary of the fabricability of most of the models listed in Table 1.
The column labels have the following meanings: percentage of surface cov-
ered by supports if the entire model is printed (%3DPST); block identifier
(BID); percentage of surface covered by supports for each piece (%3DPPS);
percentage of surface covered by supports on the entire subdivided model
(%3DPPST); percentage of surface not visible from the machine tool dur-
ing the 3-axis milling machining (%3AM); percentage of samples not visible
from the machine tool during the 4-axis milling machining (%4AM).

Fig. 12. The Max Planck model fabricated. The three separated parts on
the left, and the assembled model on the right.

Fig. 13. The Hole3 model decomposed in eighteen parts (top) and the Fan-
disk model decomposed in fifty parts (bottom).

limitation of our pipeline is its application to models like the
Hole3 one. This model has genus three and is an elementary
CSG object that a human could easily split into two parts with
flat bases which would print with no supports. Our algorithm
decomposes it in eighteen pieces (see Figure 13) because each
hole induces additional partitions in polycube space. Theoret-
ically, the compactness of the polycube can be reduced to one
single cube but only for objects of genus zero. When the genus
is higher than zero, the theoretical limitations do not allow a
compact subdivision.

10. Conclusion and future work

We presented a simple and effective, polycube based, decom-
position scheme able to manipulate digital shapes in view of
their fabrication. Our method allows fabricating any shape using
a 3D printer of user’s choice. It also includes two checking
procedures that permit to verify if the decomposition is usable
in 3- and 4-axis milling.

We plan to improve our proposed partitioning pipeline in
several ways.

One improvement is related to the fabrication with 3-axis
machine. We always produce parts with a flat base but only
this property does not guarantee that the parts are height-fields.
A solution for this problem could pass through splitting the
not height-field portions into sub-portions, using cutting planes.

Fabrication Oriented Shape Decomposition Using Polycube Mapping / Computers & Graphics (2018) 11

The choice of appropriate planes would lead to split a part into
height-fields. The iterative application of the splitting step would
produce an entirely fabricable set of portions. The optimal
choice of cutting planes and the demonstration of the termination
of the iterative method, apart from trivial solutions are open
issues.

Another interesting topic to further investigate is a post-
processing step to reduce the number of portions. A strategy to
face this problem pass through the merging of adjacent pieces
in clusters. This step would not be trivial, as we would have
to apply the right constraints to maintain the partition suitable
for fabrication. The constraints are: size, to avoid to generate
clusters greater than the printing chamber; and shape, to prevent
the increase of supports and to make sure that milling constraints
are still satisfied.

Acknowledgements

We are indebted to Marco Livesu for his Cinolib library[21]
that we used to store and process the 3D models. We also
used the CGAL library [22] to implement some functions of
the tool described in 7, LibIGL [23] for performing the boolean
operations, and CG3Lib [24] for basic algorithms and data struc-
tures. This work was partly financed by the DSURF PRIN 2015
(2015B8TRFM) project.

References

[1] Tarini, M, Hormann, K, Cignoni, P, Montani, C. Polycube-maps. ACM
Trans Graph 2004;23(3):853-860. doi:10.1145/1015706.1015810.

[2] Livesu, M, Vining, N, Sheffer, A, Gregson, J, Scateni, R. Polycut:
Monotone graph-cuts for polycube base-complex construction. ACM Trans
Graph 2013;32(6):171:1-171:12. doi:10.1145/2508363.2508388.

[3] Fanni, FA, Cherchi, G, Scateni, R. Polycube-based decomposition
for fabrication. In: Giachetti, A, Pingi, P, Stanco, F, editors. Smart
Tools and Apps for Graphics - Eurographics Italian Chapter Conference.
The Eurographics Association. ISBN 978-3-03868-048-2; 2017, p. 1-7.
doi:10.2312/stag.20171220.

[4] Livesu, M, Muntoni, A, Puppo, E, Scateni, R. Skeleton-driven adap-
tive hexahedral meshing of tubular shapes. Computer Graphics Forum
2016;35(7):237-246. doi:10.1111/cgf . 13021.

[5] Lin, J,Jin, X, Fan, Z, Wang, CCL. Automatic polycube-maps. In: Chen,
F, Jiittler, B, editors. Advances in Geometric Modeling and Processing: 5th
International Conference, GMP 2008, Hangzhou, China, April 23-25, 2008.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-
3-540-79246-8; 2008, p. 3—16. doi:10.1007/978-3-540-79246-8_1.

[6] He, Y, Wang, H, Fu, CW, Qin, H. A divide-and-conquer ap-
proach for automatic polycube map construction. Computers & Graphics
2009;33(3):369 — 380. doi:10.1016/j.cag.2009.03.024; iEEE Inter-
national Conference on Shape Modelling and Applications 2009.

[71 Gregson, J, Sheffer, A, Zhang, E. All-hex mesh generation via volumetric
polycube deformation. Computer Graphics Forum 2011;30(5):1407-1416.
doi:10.1111/j.1467-8659.2011.02015.x.

[8] Huang, J, Jiang, T, Shi, Z, Tong, Y, Bao, H, Desbrun, M. {1basedd
construction of polycube maps from complex shapes. ACM Trans Graph
2014;33(3):25:1-25:11. doi:10.1145/2602141.

[9] Cherchi, G, Livesu, M, Scateni, R. Polycube simplification for coarse
layouts of surfaces and volumes. Computer Graphics Forum 2016;35(5):11-
20. doi:10.1111/cgf . 12959.

[10] Hu, R, Li, H, Zhang, H, Cohen-Or, D. Approximate pyramidal shape
decomposition. ACM Trans Graph 2014;33(6):213:1-213:12. doi:10.
1145/2661229.2661244.

[11] Herholz, P, Matusik, W, Alexa, M. Approximating free-form geom-
etry with height fields for manufacturing. Computer Graphics Forum
2015;34(2):239-251. doi:10.1111/cgf . 12556.

[12] Luo, L, Baran, I, Rusinkiewicz, S, Matusik, W. Chopper: Partitioning
models into 3d-printable parts. ACM Trans Graph 2012;31(6):129:1-129:9.
doi:10.1145/2366145.2366148.

[13] Song, P,Fu, Z, Liu, L, Fu, CW. Printing 3d objects with interlocking
parts. Computer Aided Geometric Design 2015;35:137 — 148. doi:10.
1016/j.cagd.2015.03.020; geometric Modeling and Processing 2015.

[14] Hao, J, Fang, L, Williams, RE. An efficient curvature?based partitioning
of large?scale stl models. Rapid Prototyping Journal 2011;17(2):116-127.
doi:10.1108/13552541111113862.

[15] Livesu, M, Ellero, S, Martinez, J, Lefebvre, S, Attene, M. From 3d
models to 3d prints: an overview of the processing pipeline. Computer
Graphics Forum 2017;36(2):537-564. doi:10.1111/cgf . 13147.

[16] Alemanno, G, Cignoni, P, Pietroni, N, Ponchio, F, Scopigno, R.
Interlocking pieces for printing tangible cultural heritage replicas. In:
Klein, R, Santos, P, editors. Eurographics Workshop on Graphics and
Cultural Heritage. Eurographics Association; 2014, p. 145-154. doi:10.
2312/gch.20141312.

[17] Muntoni, A, Livesu, M, Scateni, R, Sheffer, A, Panozzo, D.
Axis-aligned height-field block decomposition of 3d shapes. ACM
Trans Graph 2018;37(5):169:1-169:15. URL: http://doi.acm.org/
10.1145/3204458. doi:10.1145/3204458.

[18] Hou, G, Frank, MC. Computing the global visibility map using slice
geometry for setup planning. Journal of Manufacturing Science and Engi-
neering 2017;139(8):081006. doi:10.1115/1.4036423.

[19] Frank, MC, Wysk, RA, Joshi, SB. Determining setup orientations
from the visibility of slice geometry for rapid computer numerically con-
trolled machining. Journal of manufacturing science and engineering
2006;128(1):228-238. doi:10.1115/1.2039100.

[20] Zhou, Q, Grinspun, E, Zorin, D, Jacobson, A. Mesh arrangements for
solid geometry. ACM Transactions on Graphics (TOG) 2016;35(4):39.
doi:10.1145/2897824.2925901.

[21] Livesu, M. cinolib: a generic programming header only C++
library for processing polygonal and polyhedral meshes. 2017.
Https://github.com/maxicino/cinolib/.

[22] The CGAL Project, . CGAL User and Reference Manual. 4.11 ed.; CGAL
Editorial Board; 2017. URL: http://doc.cgal.org/4.11/Manual/
packages.html.

[23] Jacobson, A, Panozzo, D, etal. libigl: A simple C++ geometry processing
library. 2016. Http://libigl.github.io/libigl/.

[24] Muntoni, A, Nuvoli, S, et al. CG3Lib: A structured C++ geometry
processing library. 2018. Hittps://github.com/cg3hci/cg3lib.

	Introduction
	State of the art
	Polycube maps
	Polycube-map construction

	Fabrication
	Additive manufacturing
	Subtractive manufacturing

	Problem overview
	Polycube partitioning
	Cutting planes
	Side flattening

	Final decomposition
	Feasibility checking for fabrication
	3D printing support control
	3-axis milling checking
	4-axis milling checking

	Results and analysis
	Partitioning in additive manufacturing
	Partitioning in subtractive manufacturing
	3D printing examples

	Limitations
	Conclusion and future work

