
University of Cagliari

PhD Program in Mathematics
and Computer Science

Geometry Processing for
Subtractive Fabrication

Ph.D. Candidate:
Alessandro Muntoni

Supervisor:
Prof. Riccardo Scateni

Abstract

Subtractive manufacturing technologies, such as 3-axis CNC milling, add a
useful tool to the digital manufacturing arsenal. However, each milling pass
using such machines can only carve a single height-field surface, defined with
respect to the machine tray, limiting the set of geometries that may be produced
with this technique.

This thesis presents two methods which enable the fabrication of simplified
or decomposed geometries using subtractive techniques. The first method aims
to obtain, starting from a given model, a simplified shape that can be easily
unfolded. The final objective is to reproduce it by producing the unfolded object
using a 3-axis CNC milling machine with special milling tools called V-Routers,
to create particular joints which make the assembly process an easy task. The
second method enables fabrication of general 3D shapes using 3-axis CNC milling
methodology by providing a novel robust algorithm for decomposing general 3D
geometries into a small set of overlap-free height-field blocks, volumes enclosed by
a flat base and a height-field surface defined concerning this base. Such blocks
can be manufactured with a single pass of 3-axis milling and then assembled
to form the target geometry. Computing the desired decomposition requires
solving a highly constrained discrete optimization problem, variants of which are
known to be NP-hard. We effectively compute a high-quality decomposition by
using a two-step process that leverages the unique characteristics of our setup.
Specifically, we notice that if the height-field block directions are constrained to
the major axes we can always produce a valid decomposition starting from a
suitable surface segmentation. Our method first produces a compact set of large,
possibly overlapping, height field blocks that jointly cover the model surface by
recasting this discrete constrained optimization problem as an unconstrained
optimization of a continuous function, which allows for an efficient solution.
We then cast the computation of an overlap-free, final decomposition as an
ordering problem on a graph, and solve it via a combination of cycle elimination
and topological sorting. The combined algorithm produces a compact set of
height-field blocks that jointly describe the input model within a user given
tolerance and satisfy all manufacturing constraints. We demonstrate our method
on a range of inputs, and showcase some real-life models manufactured using
our technique.

3

Contents

1 Introduction 1

2 Background 5
2.1 Simplification to Unfoldable Models 5
2.2 Heightfields Decomposition . 6

3 Simplification to Unfoldable Models 11
3.1 Overview . 11
3.2 Marching Cubes . 13
3.3 Method . 16

3.3.1 Automatic Simplification 16
3.3.2 User-Driven Simplification 20
3.3.3 Unfolding . 22

3.4 Conclusions and Future Works 22

4 Heightfields Decomposition 27
4.1 Overview . 27
4.2 Problem Setting . 29
4.3 Method . 31

4.3.1 Initialization . 31
4.3.2 Partition into Overlapping Height-Field Blocks 32
4.3.3 Overlap Resolution . 36
4.3.4 Improving Blocks Size and Shape 41
4.3.5 Faithfulness vs Complexity 42

4.4 Results . 43
4.4.1 Milled Results. 44
4.4.2 Internal Framework. 44
4.4.3 Height Control. 45
4.4.4 High-Frequency Models. 45
4.4.5 Comparison with [Hu et al., 2014]. 45
4.4.6 3D Printing. 45
4.4.7 Implementation Details. 46

4.5 Limitations and Concluding Remarks 47

i

ii

A Simplification Masks 53
A.1 Masks with more than one set of Points of Interest 53
A.2 Masks with only one set of Points of Interest 53

B Box-Integration of a Tricubic Scalar Field. 63

C Valid Height-Block Decomposition via AA Box Splitting. 65

D Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 67
D.1 Introduction . 67
D.2 Related work . 68
D.3 Pipeline overview . 71
D.4 Skeleton resampling . 73
D.5 Resolution control . 74

D.5.1 Cone detection . 75
D.5.2 Subdivisions propagation 76

D.6 Projection and Finalization . 78
D.7 Results . 79
D.8 Conclusions . 83

D.8.1 Limitations and further works 85

Bibliography 87

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Introduction 1

Chapter 1

Introduction

The advent of digital manufacturing has opened the doors to broad-based
bespoke 3D object fabrication, while simultaneously introducing numerous new
geometry processing challenges. The modern digital fabrication toolbox spans
a broad range of additive and subtractive methods. Additive techniques (figure
1.1(a)), such as 3D printing, build 3D objects by adding layer-upon-layer of
material, while subtractive ones (figure 1.1(b)), such as 3-axis CNC milling,
carve material away from a solid block to produce the desired shape. The
different technologies complement one another across some dimensions.

Subtractive technologies offer some advantages compared to their additive
counterparts. Most notably they enable manufacturing using un-layerable
materials such as wood or stone. Compared to 3D printing, CNC milling
exhibits some particularly desirable properties: it can operate across a much
wider range of scales and provides higher accuracy, and 3-axis milling machines
require less maintenance than 3D printers [Newman et al., 2015].

While other technologies are capable of producing many types of geometries

(a) Additive Fabrication (b) Subtractive Fabrication

Figure 1.1: Fabrication Techniques

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

2 Introduction

(a) Wood (b) Alluminum (c) Stone

Figure 1.2: Examples of Millable Materials

in a single pass, traditional single-pass 3-axis CNC machining is limited to
fabricating 2.5D height-field blocks, 3D solids bounded by a flat base and a
height field top surface defined along a direction orthogonal to, and located
strictly above, this base. 4-axis milling machines have more relaxed constraints,
since they allow the target object to rotate along an additional axis. It enables
the milling tool to reach every point which can be expressed as a height-field
along (at least) one of the planes generated by the rotation along the 4th
axis. Furthermore, the 5-axis milling machines allow the rotation along two
orthogonal axes, further relaxing the manufacturability constraints. 3-axis CNC
machines are cheaper and easier to use than the 4-axis and the 5-axis ones [Jun
et al., 2003]. In this thesis, we present two methods which can process 3D digital
shapes to produce a physical representation using 3-axis milling machines.

The first method, described in Chapter 3, is still a work in progress and it has
the goal to simplify an input 3D surface producing a polygon mesh composed
of a small number of flat primitives, which approximates the given surface
(Figure 1.3, left). The aim is to reproduce the unfolding of the output polygon
mesh in sheets of rigid material (Figure 1.3, center) using CNC machines with
special cutters called V-Routers, which allow creating high precision V-shaped
furrows. The furrows, made along the edges, reproduce the dihedral angle
between each couple of adjacent flat primitives. Therefore, once the machining
is done, we can easily fold and join the primitives, in order to reproduce the
simplified model with a minimum manual effort and a high precision. We show
in Chapter 3 what we have already implemented and tested with partial results,
and what is still a to do.

The second method, described in Chapter 4, enables the fabrication of
general 3D geometries using 3-axis CNC milling machines by algorithmically
decomposing general 3D shapes into height-field blocks (Figure 1.4, right).
Once fabricated, these blocks can be joined together to produce the desired
output shape. This methodology extends customized fabrication of general
3D geometries to additional materials which cannot be used with additive

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Introduction 3

Figure 1.3: We enable fabrication of simplified 3D geometries (left) using V-
Router tips with CNC machining along the edges of their unfolding (center),
which perfectly join after the manual composition (right).

Figure 1.4: We enable fabrication of general 3D geometries (right) using single
pass 3-axis CNC machining by algorithmically decomposing 3D geometries (left)
into height-field blocks (center).

techniques (Figure 1.4, left), and allows users to benefit from other advantages
of 3-axis CNC milling, such as an extensive scales range, when manufacturing
general geometries.

In appendix D, it is also shown a method which is not related to the main
subject of this thesis, but it has been presented during the Ph.D. studies of
the candidate. The technique allows for the automatic generation of structured
hexahedral meshes of articulated 3D shapes. The complex problem of generating
the connectivity of a hexahedral mesh of a general shape has been recast into
the more straightforward problem of creating the connectivity of a tubular
structure derived from its curve-skeleton. It has also been provided volumetric
subdivision schemes to nicely adapt the topology of the mesh to the local
thickness of tubes, while regularizing per-element size. The method is fast,
one-click, easy to reproduce, and it generates structured meshes that better
align to the branching structure of the input shape if compared to previous
methods for hexa mesh generation.

Part of the results obtained during the development of this thesis have been
published in the following articles:

Marco Livesu, Alessandro Muntoni, Enrico Puppo, and Riccardo Scateni,

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

4 Introduction

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes,
2016. Computer Graphics Forum, vol. 35, number 7, pages 237–246.

Alessandro Muntoni, Marco Livesu, Alla Sheffer, Riccardo Scateni and
Daniele Panozzo, Height-Field Block Decomposition for 3-Axis Milling.
Submitted to Transaction on Graphics (TOG).

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Background 5

Chapter 2

Background

Our work fits into the highly active domain of geometry processing for digital
fabrication [Livesu et al., 2017, Umetani et al., 2015, Liu et al., 2014]. While
much of the recent research focused on additive technologies, we address the
complementary challenge of geometry processing for subtractive methodologies,
and specifically 3-axis CNC milling. While multiple methods address manu-
facturing specific aspects of milling such as computing machining paths [Dinh
et al., 2015], our work is the first to solve the problem of decomposing generic
3D geometries to enable 3-axis CNC milling based fabrication.

Our work focuses on two different methods: the first one aims to simplify a
generic 3D geometry, producing a polygon mesh composed of a small number of
flat primitives having a restricted set of dihedral angles between them, i.e., the
ones of the V-Router tools. The second one addresses the problem of finding a
decomposition of generic 3D geometries, to enable a 3-axis CNC milling based
fabrication. Below we review the related simplification and decomposition
technologies.

2.1 Simplification to Unfoldable Models

Generally speaking, mesh simplification and approximation have been trend-
topics in recent years. [Cohen-Steiner et al., 2004] proposes a method which
produces an approximation of the surface using a variational approach.This
technique is general purpose, and it has never been used in the fabrication
context.

Fabrication of 3D digital shapes using flat sheets of rigid materials has been
studied for various applications. [Richter and Alexa, 2015] represent an input
geometry using beams with a rectangular cross-section. The authors show
some beams fabricable in wood , manufactured with laser cutter machines and
assembled with particular joints. [Schwartzburg and Pauly, 2013] and [Cignoni
et al., 2014] present methods for the fabrication of 3D models by the interlocking
of planar pieces and strips. These three papers propose a solution to problems

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

6 Background

which are substantially different from ours: they do not aim to create a surface,
but to generate a set of strips or planar pieces that are joined together (with
interlocks or another type of joints). On the contrary, we want to produce a 3D
surface composed of a few polygonal planar faces.

A more related problem has been solved by [Mitani and Suzuki, 2004]. They
simplify an input shape, producing a set of triangle strips that can be cut, folded
and glued together to obtain a papercraft object. However, the primitives of
the output are limited to triangles and the assembly process is quite difficult,
mostly suitable for papercraft lovers only.

[Chen et al., 2013] propose a method which solves a problem that is very
similar to ours. The authors approximate the input surface in a 3D mesh
with a small number of planar polygonal faces for fabrication with CNC cutter
machines. However their assembly process is very complicated: it needs proper
connectors, and it could take several hours for a single model. In our method,
we introduce an additional constraint on the possible dihedral angles between
adjacent faces , to simplify the assembly process.

[Chen and Sass, 2016] propose an alternative approach for the assembly
process by creating a novel interlocking system with unique joining features.
However, their work focuses only on models produced with CAD tools.

In [Zimmer et al., 2014] the authors try to solve the problem of representing
an input surface using Zometool, a mathematical modeling system used in
various areas. Their problem introduces an angle constraint: every Zometool
node has a small set of possible directions, and therefore the angle formed along
the edges belongs to a well-known restricted set. However, they do not need to
simplify the input mesh with the goal of obtaining a small number of faces on
their output mesh.

Polycubes are simplified models in which every primitive is orthogonal
to one of the three major axis ([Tarini et al., 2004]). [Livesu et al., 2013]
propose an algorithm for the automatic generation of polycubes. However,
polycubes are very simple 3D meshes and they rarely look like the original
model. Moreover, having only 90 degree dihedral angles on the final results
would be very restrictive compared to the V-Router tools for milling available
on the market.

2.2 Heightfields Decomposition

Surface Segmentation. Numerous method had been proposed for segment-
ing a surface model into charts that meet some prescribed requirement [Shamir,
2008]. The general frameworks they employ are focused on surface features,
and do not consider volumetric constraints. Thus while they can potentially
be modified to use height-field approximation as a desired chart property, they
allow for no obvious extension to address our volumetric constraints such as
block overlap avoidance.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Background 7

(a) (b) (c) (d)

Figure 2.1: The method of [Herholz et al., 2015] produces a set of surface height
fields (a), but it does not take into consideration possible intersections between
the resulting height blocks (b,c). The extent of the volumetric intersection
between all the resulting height blocks can be quite big (d), making impossible
to re-assemble the pieces together after fabrication.

Height Field Surface Segmentation. Starting with the early work by
[Cook, 1984], a number of height-field based surface segmentation techniques
were proposed for efficient support of normal and displacement mapping during
rendering. While adequate for this task they are poorly suited for our needs.
First, they tend to segment shapes into large numbers of charts, e.g. [Doggett and
Hirche, 2000] use over 1500 height fields to represent a human head. Such counts
make fabrication infeasible. More important, like general surface segmentation
techniques these methods have no obvious extension to the volumetric setup, i.e.
no obvious way to avoid or resolve overlaps between resulting blocks (Figure 4.1).
The problem is particularly acute in 3D since generic segment boundaries are
rarely planar and thus most induced blocks would have large interior overlaps,
(Figure 2.1).

Decomposition for 3D Printing. Multiple methods have been proposed for
decomposing shapes into parts to ensure that each component is small enough
to fit into the printing chamber during 3D printing [Song et al., 2016, Song
et al., 2015, Yao et al., 2015, Alemanno et al., 2014, Luo et al., 2012, Hao
et al., 2011,Medellin et al., 2007]. Shape decomposition is also used to ensure
quality prints in terms of surface finish [Wang et al., 2016], to minimize the
amount of material used [Vanek et al., 2014], and to achieve better mechanical
properties [Hildebrand et al., 2013]. Our problem setting is distinct from those
addressed by these methods, with only minimal overlap in problem setting or
methodology.

Volumetric Decomposition. Computational geometry research has ad-
dressed a number of problems which bear strong similarities to our setting. Any

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

8 Background

convex volumetric decomposition can clearly be converted into a height-field
block decomposition by splitting convex parts into two along an equator plane,
separating faces with up and down pointing normals. Unfortunately, computing
a minimal size exact convex decomposition is known to be NP-hard [Chazelle,
1984,Tor and Middleditch, 1984].

While practical surface-based approximate convex decomposition methods
exist [Kraevoy et al., 2007], they do not produce a convex volume decomposition,
as they do not prevent the convex hulls of the computed charts from overlapping,
and do not prevent the height-field blocks induced by the charts from intersecting.
Approximate volumetric convex decomposition, e.g. [Attene et al., 2008,Lien and
Amato, 2007], relaxes the convexity requirements to obtain a smaller number of
parts; separating these parts along the equator may result in non-height-field
blocks. Thus neither method is suitable for our needs as we require strict
height-field constraint enforcement.

Pyramidal decomposition aims to decompose an entire volume into height-
field blocks, or pyramids. [Fekete and Mitchell, 2001] proved that both the 3D
version of this problem and the 2D version on polygons with holes are NP-hard.
The approximate pyramidal decomposition method of [Hu et al., 2014], discussed
in more detail below, relaxes the pyramidality constraints to obtain approximate
compact decompositions within a realistic time frame. Our framework requires
exact satisfaction of the height-field or pyramidality requirements and requires
all surface points on the model to be covered by height-field block surfaces;
contrary to the traditional setting we allow, and even encourage, the existence
of an unfilled interior void within the model. To the best of our knowledge this
setting has never been explored before.

Height-field Decomposition for Fabrication. A number of papers specifi-
cally address height-field decomposition for fabrication.

Base
Complex

?

[Alemanno et al., 2014] propose a user assisted method
for decomposing 3D shapes into height-field blocks. Their
method is driven by a manually crafted inner structure,
which describes the bases and the orientations of each block,
fully defining the block decomposition. Overlaps between
pairs of blocks, are resolved using an interlocking zipper pat-
tern, where regions shared by multiple blocks are expected
to satisfy the height-field requirement for both blocks. This

assumption does not hold unless special care is taken in the construction of
the inner base structure, (see inset). Our approach algorithmically computes
the inner structure and automatically resolves such configurations if and when
they occur (Section 4.3.3). Thus our output can be used as an input for this
framework, replacing the manual structure design.

[Hu et al., 2014] propose an algorithm for approximate pyramidal decom-
position and advocate using it for 3D printing. As they observe, a height-field
block, or a pyramid, can be printed standing on its base, thus maximizing
its stability and ensuring that no support structures are needed to sustain it

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Background 9

during its fabrication. Since as observed earlier, exact pyramidal decomposition
is NP-hard to compute, they opt for only weak enforcement of height field
constrains and have no direct control on how far the results deviate from a
desired approximation accuracy (Figure 4.11). The method is therefore unsuited
for 3-axis milling where the height field constraint needs to be strictly satisfied.
While this framework seeks to decompose the entire volume into pyramids, we
allow for interior voids, while enforcing surface coverage, or the expectation
that each point on the model’s surface is covered by the height-field surface of
some corresponding block. This surface-based formulation is sufficient for both
milling and 3D printing settings where users largely care about the look of the
resulting model, rather than its interior, and has the extra benefit of reducing
the amount of material needed for manufacturing, thus reducing costs. Our
algorithm strictly enforces the height-field constraints, but can be relaxed to
obtain fixed accuracy height-field approximations. It thus can be used as-is for
both additive and subtractive manufacturing (Section 4.4).

[Herholz et al., 2015] decompose free-form shapes into a set of approximate
height field surface charts for milling and molding. Candidate height field
directions are sampled from the Gaussian sphere with a saliency-based approach.
As-rigid-as-possible deformation is used to enforce the height field condition
on the charts when violated. The method produces segmentations that induce
overlapping height-field blocks (Figure 2.1). In their milling examples the
authors resort to a manual process to hollow-out the back sides of each part
that results in overlap-free shell parts. By using height-field blocks we remove
the need for such manual backside processing and guarantee overlap avoidance.

[Gao et al., 2015a] propose a multi-directional 3D printing system that
allows to fabricate an object around a cuboidal shell, using its six facets as
printing beds. The method is only suitable for genus zero objects which can
be segmented into six axis-aligned approximate height field blocks. While the
algorithm seeks for a solution that minimizes the overhang angle it cannot
guarantee that the resulting angles will be below any specific threshold. Our
framework can provide both strictly height-field blocks and blocks with strictly
constrained overhang angles regardless of topology (Figures 4.9, 4.12).

Optimizing Construction Sequences. Our formulation of overlap resolu-
tion (Section 4.3.3) is inspired by earlier works on construction and assembly se-
quences, e.g. [Wu et al., 2016,Attene, 2015,Hildebrand et al., 2012,Schwartzburg
and Pauly, 2013,Cignoni et al., 2014,Skouras et al., 2015,Lo et al., 2009,Xin
et al., 2011,Song et al., 2012,Deuss et al., 2014,Zhang et al., 2016]. However,
the constraints and optimization goals we address are distinctly different, with
none of these approaches directly applicable to our needs.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

10 Background

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification to Unfoldable Models 11

Chapter 3

Simplification to
Unfoldable Models

3.1 Overview

The first method presented in this thesis is still a work in progress, and it aims
to simplify an input 3D geometry , producing a polygon mesh composed of
a few polygonal flat facets which can be unfolded and which are easy to be
assembled, once the unfolded object has been fabricated. We show what it has
been developed until now, some partial results and what is still a to do.

As argued in section 2.1, many works aim to simplify a model to get a polygon
mesh for fabrication purposes. Unlike all these works , we want to simplify a
model in a way that there is no need to address the problem of designing joints
necessary for the manual assembly process after the manufacturing.

More precisely, if two adjacent primitives (which are mainly cut with laser-
cutter machines) need to be manually joined along one edge and the angle
between them is arbitrary, then it is necessary to study a joint system that
allows the user to easily obtain the desired arbitrary angle avoiding errors which
can be propagated and that could cause a bad representation of the desired
shape. Some examples of joints used in some previous works are shown in figure
3.1.

The goal of this project is to make the manual assembly process more
manageable and less error-prone. To make it possible, the idea is to use CNC
machines with V-Router milling tools to carve the primitives in a sheet of rigid
material (e.g., plywood, stiff paper, glass).

V-Router (or V-Groove) cutters are accessories for milling which allows
engraving furrows on blocks made of millable materials. These V-shaped milling
tools enable to mill exact angles according to the tool angle. There are a lot
of available tools with different cutting angles on the market, but the most
common are multiples of 30 and 45 degrees (Figure 3.2).

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

12 Simplification to Unfoldable Models

(a) [Richter and Alexa, 2015] (b) [Song et al., 2016]

(c) [Chen et al., 2013] (d) [Chen and Sass, 2016]

Figure 3.1: Different type of joints used to assemble the primitives. [Richter
and Alexa, 2015] requires a delicate and precise assembly in order to manually
reproduce the desired angle; [Song et al., 2016] and [Chen and Sass, 2016]
propose joints which are specifically designed for the reproduction of the desired
angle; [Chen et al., 2013] propose special joints which are suitable only for CAD
models (especially 90◦).

Figure 3.2: V-Router milling cutters: they can mill furrows with correct angles
on rigid materials, and they are available with different milling angles on the
market. Images courtesy of www.toolstoday.com and www.aliexpress.com.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification to Unfoldable Models 13

(a) 90◦ dihedral angle made with a 90◦ tool

(b) 120◦ angle made with a 60◦ tool (c) 60◦ angle made with a 120◦ tool

Figure 3.3

It is possible to easily fold the primitives together, to obtain the desired
dihedral angle along the edge, using these cutters to carve from top to bottom
the sheet along the edge of each pair of adjacent primitives (Figure 3.3).

To use this carve-and-fold strategy, the primary constraint that the simplified
model needs to satisfy is that all its internal dihedral angles belong to a restricted
and well known set that contains only the angles which can be carved using V-
Router milling cutters. As a direct consequence of this constraint, we have that
also each facet normal of the simplified model can only belong to a restricted
set of values.

An initial attempt to provide a solution to this problem appears in [Muntoni
and Scateni, 2014]. They present a method to compute the simplification in
two steps. They first calculate a topology by assigning a label representing a
target normal to every triangle. In the second phase, they try to compute the
geometry by rotating every triangle to match the target normal. The main issue
with this method is that it does not guaranteed that a corresponding geometry
exists for the computed topology. The generation of a water-tight manifold
geometry, starting from a topology having the constraint that only a limited
number of possible facet normals exist, is still an open problem.

3.2 Marching Cubes

The approach we propose is strictly related to the Marching Cubes algorithm
[Lorensen and Cline, 1987]. Marching Cubes, on its naive version of the
algorithm, generates a triangle surface mesh starting from a scalar field of
boolean values that are discretized to a lattice composed of cubes. The surface
is generated using look-up tables where every permutation of values on each
cube of the scalar field is associated to a set of triangles. All the triangles
of the resulting surface are generated from a restricted and well-known set of
combination of cubes. Guaranteeing the regularity of the lattice, the possible

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

14 Simplification to Unfoldable Models

(a) (b) (c)

Figure 3.4: Problems on [Muntoni and Scateni, 2014] approach, where the
topology obtained on the bunny model (a) doesn’t correspond to geometry with
facet normals restricted to a limited number of fixed values (c).

triangle normals of a mesh computed with the algorithm belong to a well-known
set. As a direct consequence, all the possible dihedral angles between triangles
are finite and well-known. We will describe the set N of all the triangle normals
which can be generated by the Marching Cubes algorithm on the next paragraph.

A face normal which belongs to the set N is a 3D vector with only three
allowed values per component:

• +s;

• 0;

• −s;

where s is a non-zero scalar value. We define the set of normals N as the set
composed of the normals having as components all the possible permutations
with repetition of the three values listed above, except the vector (0, 0, 0). We
can divide the elements of this set into three different categories:

• Category 1: One component different from 0:
[
±s 0 0

]
,
[
0 ±s 0

]
,[

0 0 ±s
]
;

• Category 2: Two components different from 0:
[
±s ±s 0

]
,
[
0 ±s ±s

]
,[

±s 0 ±s
]
;

• Category 3: Three components different from 0:
[
±s ±s ±s

]
.

The adjacency of two polygonal faces f1 and f2 having normals nf1 and nf2
such that nf1 , nf2 ∈ N , nf1 6= nf2 and nf1 6= −nf2 can be summarized as follow:

• A facet with generic normal ±u (cat. 1):

◦ adjacent to a facet having normal with only one component different
from 0 (cat. 1):

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification to Unfoldable Models 15

♦ always generates a 90◦ angle;

◦ adjacent with a facet having normal with two components different
from 0 (cat. 2) generates a:

♦ 135◦ angle if the u component is different from 0 and it has the
same sign;

♦ 45◦ angle if the u component is different from 0 and it has
opposite sign;

♦ 90◦ angle if the u component is 0;

◦ adjacent to a facet having normal with three components different
from 0 (cat. 3) generates a:

♦ ≈ 126◦ angle if the u component has the same sign;

♦ ≈ 54◦ angle if the u component has opposite sign;

• A facet with generic normal ±u± v (vector with two components different
from 0, cat. 2):

◦ adjacent to a facet having normal with two components different
from 0 (cat. 2) generates a:

♦ 120◦ angle if it has a component (u or v) different from 0 and
with the same sign, and the other one is equal to 0;

♦ 60◦ angle if it has a component (u or v) different from 0 and
with opposite sign, and the other one is equal to 0;

♦ 90◦ angle if both the u and v components are different from 0
and only one has the same sign;

◦ adjacent to a facet having normal with three components different
from 0 (cat. 3) generates a:

♦ ≈ 145◦ angle if it has both u and v components with the same
sign;

♦ ≈ 35◦ angle if it has both u and v components with opposite
sign;

♦ 90◦ angle if one component (u or v) has the same sign and the
other one has opposite sign;

• A facet with generic normal ±u± v ± w (vector with three components
different from 0, cat. 3):

◦ adjacent to a facet having normal with three components different
from 0 (cat. 3) generates a:

♦ ≈ 70◦ angle if the number of components with the same sign is
even;

♦ ≈ 110◦ angle if the number of components with the same sign is
odd;

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

16 Simplification to Unfoldable Models

3.3 Method

3.3.1 Automatic Simplification

Initialization. We start generating a regular lattice on the Bounding Box
of the input mesh, and for every lattice point we check whether the point is
inside or outside the shape, assigning a sign accordingly. Applying the Marching
Cubes algorithm to the lattice, we obtain a surface mesh which is a possible
solution to our problem because of the restricted facet normals of the mesh.
However, as shown in Figure 3.5, the resulting mesh is composed of a significant
number of polygonal facets (we actually consider adjacent triangles with the
same normal as a unique polygonal facet). We set the grid spacing as the
average edge length of the mesh multiplied by an user parameter, which defines
the ”granularity” of the final simplified mesh.

Figure 3.5: Input model (left), a Triangle Mesh (center) and a Polygon Mesh
(right) generated by the naive Marching Cubes Algorithm. The meshes are
respectively composed of 3628 triangles and 408 polygonal facets. The triangle
normals set colors.

Geometry. The idea behind our method is to make changes to some signs
of the regular lattice on which the Marching Cubes algorithm is applied. To
identify the lattice vertices for which we want to change their sign, we introduce
the concept of Mask. A Mask is a set of adjacent cubes having a specified
combination of signs on their vertices (and, therefore, a combination of adjacent
triangles generated by Marching Cubes) that we do not want to have on our
output model. Every mask has a set of Points of interest to change this
configuration of adjacent signs. These points, when switched, can resolve the
local bad configuration or move it to another place, improving the simplified

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification to Unfoldable Models 17

global model.
An example of a Mask is shown in Figure 3.6. The shown mask (left)

is composed of four adjacent cubes with specified signs on its points, and is
composed of two sets of Points of Interest (respectively circled in orange and
cyan). Only one of these sets is selected and switched in order to change the
triangulation (center or right). We designed a set composed of 18 types of masks
that, applying rotations, generate a total number of 340 masks. We enumerate
the set of all the types of masks on Appendix A.

Figure 3.6: We show an example of a mask (left) which generates a step
between two facets with normal of cat. 1 and a facet with normal of cat. 2. This
configuration can be solved or moved switching the signs circled in orange or in
cyan. If we switch the cyan vertices, we obtain the configuration presented at the
center. Otherwise, if we change the orange vertices, we obtain the configuration
figured on the right. We choose the set of vertices which favors the expansion of
the bigger involved chart, deleting or moving the undesired local configuration.

For some masks, there are different ways to solve or move the undesired local
geometry using different sets of Points of Interest, and only one set has to to be
chosen. We give priority to bigger polygonal facets, but to do that it is necessary
to compute a segmentation on the triangle mesh to compute all the areas. This
is an massive operation to do for every switch of sign (which changes the triangle
mesh and, therefore, the segmentation). However, every switch of signs on the
lattice vertices is a local modification on the Marching Cubes triangle mesh (a
switch of a point sign reflects a change of the triangles generated by its eight
incident cubes of the lattice), which means that also the segmentation can be
locally updated. Therefore, to make the switch operation fast we link three data
structures to each other: the Lattice, the Marching Cubes triangle mesh, and
the Segmentation. Each cube of the lattice generates triangles of the Marching
Cubes mesh, and it keeps the references to them. Every triangle links to the

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

18 Simplification to Unfoldable Models

chart (that is a polygonal flat facet) which belongs to the Segmentation. When
we find a matching Mask on the lattice, we give priority to the Points of Interest
that link to the bigger charts of the Segmentation, and we modify only the
involved charts whenever a sign switches.

We actually modify the geometry of the model by putting all the cubes of
the lattice in a queue and checking if every cube and its neighbors match with
a mask of cubes that belongs to our set of Masks. If they match, we switch its
best set of points of interest, we update all the data structures, and we push
back all the modified cubes in the queue. The process ends when the queue
is empty, or a loop is detected (making sure that only cubes which generate
loops are left in the queue). We show in Figure 3.8 some results using the
presented method. These models have still some features (like small spurious
facets between big orthogonal facets) that are uneasy for a fabrication task.
However, they are bound to the Marching Cubes Algorithm, as shown in Figure
3.7. We will deal with this problem by proposing a graphic user interface, which
is presented in the next paragraph.

Figure 3.7: Using the Marching Cubes lookup table, it is impossible to obtain
a mesh with 90 degrees dihedral angles. This means that there will always be
a small facet which acts as a junction between two facets with a 90 degreed
dihedral angle.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification to Unfoldable Models 19

Figure 3.8: Some results obtained using the method described in section 3.3.1.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

20 Simplification to Unfoldable Models

3.3.2 User-Driven Simplification

We deal with the problem shown in figure 3.7 by providing a Graphic User-
Driven tool that allows the user to select and remove some unwanted small
polygonal facets, keeping the shape manifold and watertight. We will briefly
explain the method, and we invite the reader to see [Scalas and Scateni, 2016]
for more in-depth study.

The main idea is to remove the polygonal facet that is selected by the user,
and then close the surface by extending all the adjacent facets along the hole.
Once the undesired facet is selected, there are two different outputs that are
immediately visible to the user:

• the closed surface without the undesired facet, or

• an error message which communicates to the user that it is not possible
to close the surface due to local configuration of the adjacent faces.

The process behind the deletion of a single facet is represented in figure
3.9. The first step removes merely the facet selected by the user, its edges,
and its vertices. All its adjacent facets become then non-closed facets. We
collect all the non-closed facets in a circular buffer, following the adjacency
order. Every pair of adjacent facets generates a straight half-line, which is
the intersection between the two planes defined by the planar facets, having
as origin the survived vertex of the edge lying on the line. We first look for
a couple of adjacent straight lines (which is a triplet of adjacent facets) for
which there is an intersection, and we choose the closest intersection to one
of the vertices of the deleted facet. If this intersection doesn’t exists it means
that the surface cannot be closed if the initial facet would be removed. If the
intersection exists, the intersection point will belong to the new mesh, and
the facet at the center of the triplet will be closed with two edges that will
meet each other at the intersection point. The facet at the center will now exit
from the circular buffer, and the two external facets of the previous triplet will
become adjacent, generating a new straight half-line with origin in the early
created vertex. The procedure iterates on the triplet which involves the earlier
involved two facets and where the intersection between the straight half-lines is
closest to the created vertex. The process terminates when:

• there are only two facets in the buffer;

• the last three or more facets in the buffer have the intersection between
all the straight half-lines that lies on the same point;

• two adjacent triplets (sharing two adjacent facets) don’t have an intersec-
tion.

This approach is correctly working on facets having a fully convex or fully
concave neighborhood, and when the intersections do not involve external facets
that are not adjacent to the undesired facet. This particular case is complicated

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification to Unfoldable Models 21

Figure 3.9: Deletion of a facet. After removing f0, a circular buffer containing all
its adjacent facets is created. The triplet f1, f2, f3 is selected at the beginning,
the intersection between the two rays r12 and r23 is computed, and the facet
at the center of the triplet (f2) is removed from the buffer (c). The process is
iterated for the next nearest intersection until the surface is closed (f).

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

22 Simplification to Unfoldable Models

to manage due to the high variety of cases which can happen. This case is still
an open problem and we plan to solve it on future works. For the presented
application, we only show an error message. An example of some facets deleted
on the bottom of the moai model using this method is shown in figure 3.10.

The user can also select multiple adjacent facets and delete them together.
This feature allows the simplification of shapes having local configurations in
which a facet has two adjacent facets with the same normal but a different lying
plane. In this case, deleting the facet only would be impossible. The deletion
algorithm used is the same as shown above. An example is shown in figure 3.11.

In figure 3.12 we show the Moai model before and after the simplification
by the user. The initial model was made of 45 polygonal facets, and the final
result is composed of 21 polygonal facets. The total time required for the
simplification is about one minute.

3.3.3 Unfolding

We also provide an edge-unfolding heuristic algorithm (Figure 3.13) designed
on purpose for our meshes. We studied different unfolding strategies; we refer
to [Nuvoli and Scateni, 2017] for deepening. One of the best heuristics we
studied uses a normal ordering towards a given number of directions for the
facets. Furthermore, it makes different post-processings to minimize the final
number of connected components of unfolded faces, hence maximizing the
average area of every connected component.

Starting from our polygon mesh, we try to unfold the highest number of
facets in a single subtree, such that each face in the unfolding is not overlapping
with any other. At each iteration we add a new reachable facet, checking if it
causes an overlap. At the end of these iterations, some facets could not have
been included in the starting subtree, and that means they can’t be attached to
any facet of the current unfolding with no overlaps. These remaining faces are
often single disjoint faces, and we want to avoid these situations. Therefore, we
try to create a new unfolding starting from the smallest subtree and repeating
the iterations with the goal of unfolding the set of the remaining facets. If the
starting unfolding produces more than one subtree, then the resulting unfolding
will be a spanning forest. The method tries to maximize the average area
covered by all the spanning trees.

3.4 Conclusions and Future Works

The proposed method is still a work in progress, but the results are encouraging.
However, the results shown are improvable in different respects. The main issue
is given by the set of masks, which is handmade. We need to find a set which
can be automatically generated using a set of well-defined rules and which still
solves the problem in a proper way. We also need to improve the method on
symmetric models, and we need to make the algorithm independent from the

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification to Unfoldable Models 23

processing order of the masks. We also need to focus on the post-processing
to transform the Graphic User-Driven tool for the deletion of small faces in a
full-automatic approach. Another idea is to introduce a texturing-manager to
the method, to have a mapping from a texture attached to the input model to
a texture which could be printed and glued on the final simplified model. Once
all these problems are solved, we will finally be able to fabricate our tangible
results.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

24 Simplification to Unfoldable Models

Figure 3.10: The bottom of the moai before (left) and after (right) removing
some spurious facets with our method.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification to Unfoldable Models 25

Figure 3.11: Selection and deletion of two adjacent facets. The facets cannot
be deleted singularly due to the adjacency of two facets with the same normal
but a different lying plane. If selected together, the surface can be successfully
closed thanks to the extension of the adjacent facets on the border of the two
deleted facets.

Figure 3.12: The pipeline for the simplification of the moai model: the input
mesh (left) is first automatically simplified (center) using the method described
on 3.3.1, then is finalized by the user with our tool described on section 3.3.2.
After the user-driven simplification, we obtained a model composed of 21
polygonal facets versus a starting number of 45.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

26 Simplification to Unfoldable Models

Figure 3.13: The unfolding of the moai model (bottom-left of figure 3.8) before
(up) and after (down) the user-driven simplification.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 27

Chapter 4

Heightfields Decomposition

4.1 Overview

Requirements and Desiderata. A decomposition of an input mesh into
blocks suitable for 3-axis CNC milling must account for the following criteria.
It should assign each point on the surface to a corresponding height-field block,
covering the input surface. To facilitate manufacturing, the blocks should
obviously never overlap and should remain strictly inside the input surface
(Figure 4.1). To reduce manufacturing time and to facilitate easy assembly,
we need to keep the number of blocks small and maintain comparable block
sizes, avoiding tiny blocks. At the same time, for manufacturing purposes,
these blocks do not need to cover the interior of the processed model; in fact,
increasing the interior void leads to cost and time savings as fabrication requires
less material.

Based on these requirements, our algorithm’s goal can be formulated as
computing a decomposition that satisfies the constraints above while simultane-
ously minimizing the number of blocks and maximizing the size of the smallest
block. While this specific problem setting has not been investigated before,
closely related problems such as minimal pyramidal decomposition, or covering
a volume by non-overlapping height-field blocks [Hu et al., 2014, Fekete and
Mitchell, 2001], have been shown to be NP-hard and have no known exact or
approximate polynomial time solutions. To obtain a pyramidal decomposition
within an acceptable computation time [Hu et al., 2014] significantly relax the
height-field constraints and consider only a finite set of possible height-field
orientations. In our setting such relaxation is not possible, since the identified
constraints are critical for manufacturing. We note that, as discussed in Section
4.3, we can always guarantee a valid solution by quantizing the set of possible
block base and side face orientations to the major axis directions. We use
this observation to develop an algorithm that is guaranteed to obtain valid
decompositions that satisfy the constraints exactly and can be computed within
a feasible time frame. As shown by our results, our algorithm robustly produces

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

28 Heightfields Decomposition

(a) (b) (c) (d) (e)

Figure 4.1: From height field segmentations to height field solid blocks: (a)
two alternative height field segmentations defined on the boundary of a simple
shape. Top one uses arbitrary directions, the bottom is constrained to the
global axes; (b) the resulting minimal solid blocks with flat base defined by
each height field segment. Notice that raising any of the bases would leave
a portion of the boundary uncovered; (c) some blocks overlap in the interior
of the shape (red extent); (c) overlaps are resolved by splitting the blocks
along their supporting lines, thus increasing the number of blocks; (e) the split
operation produces 4 invalid blocks out of 5 for the non axis aligned case (top,
red ovals). Constraining the height field directions to the global axis we can
always guarantee a valid solution (proof in Appendix C)

decompositions with acceptable, even if sub-optimal, block counts for a range
of complex geometries.

Optional Human-Guidance. Our method is fully automatic but allows for
optional human guidance for a number of output properties: user can trade
input fidelity for lower block count (Section 4.3.5); they can limit block size
to ensure that each block fits into the printing bed of a user-specific CNC
milling machine and to provide tradeoff between number of blocks and amount
of material used for fabrication (which is important for certain materials and
could lead to significant cost savings, Section 4.3.2).

Support-Free Additive Manufacturing. Height-block decomposition can
benefit applications beyond 3-axis CNC machining. Deposition modeling print-
ers require supports when printing models with large overhangs. Eliminating
supports reduces printing time and increases surface quality, motivating meth-
ods that seek to decompose models into blocks with limited overhang extent or
angle, e.g. [Hu et al., 2014]. Our framework supports coarse block decomposition
with relaxed height-field constraints, allowing each block’s top surface to have
overhangs while constraining the overhang angle (Figure 4.12). Contrary to
previous attempts it allows strict constraints on the overhang angle based on
printer properties, leading to perfect geometric fidelity.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 29

Contribution. Our core contribution is a computational solution for man-
ufacturing generic geometries using single pass 3-axis CNC machining. We
achieve this goal by providing an algorithm for height-field block decomposition
that produces compact sets of blocks that satisfy all manufacturing constraints.
We demonstrate the practical applicability of our algorithm on 5 fabricated
results, 4 of which are milled (Figures 1.4 and 4.10) and 1 3D printed (Fig-
ure 4.12), and compare our method against potential alternatives (Figures 2.1
and 4.11). To ensure replicability of our results and to accelerate adoption
of our technique, we attach a reference, open-source implementation of our
algorithm in the additional material.

4.2 Problem Setting

Formal Problem Statement. We can formulate height-block decomposition
as a semi-volumetric partition of an input geometry into blocks that satisfy the
following requirements:

1. Axis: each block B has an assigned milling direction, referred to as the
axis;

2. Base: each block has a flat polygonal base b orthogonal to its axis n.

3. Height-Field: each block has height field geometry with respect to its
milling direction - i.e. for any point p inside the block B, the line segment
between p and the perpendicular projection p′ of p onto the base b lies
entirely inside B. Moreover the block is located strictly to one side of its
base. The block is bounded by its top surface, the base and optional side
faces orthogonal to the base.

4. Maximal Size: the size of each block is not larger than the milling chamber
of the CNC machine;

5. Coverage: the top, or height-field, surfaces of the blocks jointly cover the
input surface;

6. Non-overlapping: blocks do not overlap;

7. Complexity: the overall number of blocks is small, and each block contains
as few thin features as possible.

Conditions (1) through (4) are necessary to fabricate each block using a 3-
axis milling machine in a single machining pass. We jointly refer to these
four conditions as block-fabrication constraints. The block size is often further
restricted along the height-field block axis, as the block’s height affects the
amount of material used, and reducing it shortens fabrication time and saves
costs. The coverage and non-overlap conditions are necessary to assemble the
target model from these blocks. We refer to a block decomposition which

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

30 Heightfields Decomposition

satisfies all six conditions as valid. The last criterion, while not mandatory, is
important for real-life fabrication since an excessive number of blocks would
make assembly too cumbersome to attempt, and thin features make the blocks
fragile.

Algorithm. To obtaine the desired decomposition we need to solve a highly
constrained discrete-continuous optimization problem over a very large search
space, the variables of which are the number of blocks, the direction associated
with each block, and the location and geometry of each block’s base. We require
a method that is capable of producing the desired compact solutions on any
given input within a reasonable time-frame. The key observation behind our
framework is that if we initialize our computation using a set of height-field
blocks defined via intersections of the input model with axis-aligned boxes then
we can always produce a valid, non overlapping decomposition via a finite set
of boolean operations (proof in Appendix C). Specifically, given such set of
input blocks that jointly cover the input surface, we can split all blocks along
the bounding planes of the bounding boxes associated with all the other blocks
(Figure 4.1, bottom). This splitting process eliminates all partial block overlaps
and allows for trivial overlap elimination via duplicate block removal. Similarly,
all resulting rectangular box sub-blocks that do not touch the surface can be
trivially deleted. The resulting set of sub-blocks satisfies all our requirements.
In particular, each resulting sub-block is an intersection of a rectangular box
with a section of the input surface, a priori constrained to be a height-field
surface, i.e. another height-field block. Note that the same argument applies if
the initial blocks are intersections of the model with a prism whose faces are axis
aligned. Note also that using the same process on non-axis aligned blocks would
not produce the desired result (Figure 4.1, top). This hypothetical splitting
process provides a robust height-field decomposition of the input, but clearly
will generate a large number of blocks. In practice, rather than performing
all such splits at once, we perform a more restricted set of Boolean operations
that use a subset of the box bounding planes and seek to minimize the number
of blocks produced. Our process preserves the height-field property of each
individual block and terminates once all overlaps are removed. Thus, in the
worst case it produces the same block set as the basic splitting algorithm above,
but in practice its outputs while equally valid are drastically more compact.
The overlap removal process identified above can be applied to input height-field
blocks that overlap not only in their interior but have overlapping top surfaces
as well (Figure 4.2) and there is no practical advantage to starting with blocks
with non-overlapping top surfaces. Thus rather than computing a disjoint
surface segmentation first, we can obtain a desired height-block decomposition
as, or more, efficiently by using as a starting point a compact set of, possibly
overlapping, height-field blocks that jointly cover the surface of the input model.
To ensure output validity and for algorithmic simplicity we constrain these
initial blocks to intersections of axis-aligned boxes and the input model (an axis
aligned prism constraint while possible is unwieldy to enforce). Lastly, we note

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 31

that individual blocks induced by purely surface-based segmentation may not
be entirely inside the input model. We explicitly constrain the induced height-
blocks to be inside the model by using a volume-aware block growth process.
We first compute a dense set of maximal size valid height-field blocks that
jointly cover the surface of the input model without intersecting it (Figure 4.2b).
We avoid redundant intersection tests by reformulating the computation of
each block as an unconstrained continuous optimization problem that can be
solved efficiently using standard tools. We then compact this set by computing
a minimal subset that covers the entire input surface while keeping the overlaps
between the selected blocks small (Figure 4.2c).

Given this set of blocks, we perform a sequence of Boolean operations
that remove all overlaps and jointly ensure that the resulting blocks retain
the height-field property and can be assembled to form the desired output
(Section 4.3.3). In computing the sequence we seek to minimize the number of
block produced and to maximize the smallest feature size as much as possible,
to avoid the creation of fragile components that might break during fabrication.
The combined algorithm strictly enforces all manufacturing constraints, while
producing decompositions into small number of blocks and preserving the input
surface geometry.

Fabrication Advantages. Restricting the sides and bases of all blocks to
axis aligned surfaces not only guarantees our ability to generate a valid solution
within a feasible amount of time, but has several practical fabrication advantages.
Once height-field blocks are manufactured, they need to be joined together to
form the target object. Generating suitable joints is an easier task when the
angles between interior block surfaces are restricted to a fixed set, and is easiest
when all surfaces are axis aligned with respect to a common coordinate system.
For small models we can then connect blocks together using standard L-shaped
(90◦) or flat metal supports to avoid the need for customized joints. For large
scale models necessitating additional internal scaffolds for structural robustness,
we can similarly use a fixed, standard, set of joints throughout the scaffold. Our
orientation restriction thus makes our approach straightforward to integrate
into existing manufacturing workflows.

4.3 Method

4.3.1 Initialization

The orientation of the input is arbitrary and may impact the height block
decomposition. We fix this degree of freedom by finding the optimal orthonormal
coordinate frame to which align our mesh S. Specifically, we compute a global
rotation matrix R that minimizes:

arg min
R

∑
f∈F Af‖Rnf‖1∑

f∈F Af
,

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

32 Heightfields Decomposition

(a) (b) (c) (d) (e)

Figure 4.2: Overview: (a) input; (b) dense set of axis aligned maximal height
height-field blocks (height-field blocks along the horizontal direction in green,
blocks along the vertical direction in blue); (c) minimal block covering of
the shape; (d) final blocks after overlap removal (with boundaries of original
intersections demarcated); (e) resulting blocks, laid for fabrication.

with nf denoting face normals, and Af face areas. Similarly to [Gao et al.,
2015a], we solve this problem with a RANSAC approach, sampling the Gauss
sphere using spherical Fibonacci and selecting the orientation that performs
best.

4.3.2 Partition into Overlapping Height-Field Blocks

The goal of this stage is to compute a set of individually valid height-field
blocks, that jointly cover the input surface, where each block is constrained to
be a intersection of a the input model and an axis-aligned rectangular box. To
produce a compact final decomposition we seek to minimize the number of blocks
in this covering set. A greedy approach to generating such a set would be to start
from a seed block, maximally grow it until it cannot be further extended without
violating our constraints, and then add more blocks using a similar process until
coverage is achieved. This approach is heavily dependent on the strategy used
to compute seed blocks, and can result in drastically larger numbers of blocks
than necessary. Instead we use a more conservative, if more time consuming,
strategy where we first compute a large set of maximal blocks that cannot
be further extended without violating our block-fabrication constraints, and
then select a minimal subset of them that satisfies our coverage constraint.
We avoid time-consuming brute-force evaluation of fabrication constraints by
precomputing valid solution spaces for block extension and constraining block
computation to these spaces. This two stage process provides a suitable starting
point for our overlap resolution stage (Figure 4.2b). An advantage of this two
stage approach is that the initial maximal blocks can be computed entirely
in parallel, allowing for a trivial speedup. While other strategies could be
used to grow the initial maximal blocks, we found our solution to be simple to
implement and robust.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 33

Maximal Height-Field Block Set

We desire a set of maximal size blocks that provide a good starting point for
selecting a compact subset that covers the entire model. While in general
the number of sides such blocks or their base polygons can have is unlimited,
searching for all possible block geometries is impractical. To efficiently find a
solution we reduce the search space by limiting the set of possible blocks to
the intersections between axis aligned boxes and the input shape. To obtain
a compact set of blocks that satisfied coverage we start by computing a dense
set of axis-aligned maximal size blocks that describe portions of the input
surface. We seed these blocks using bounding boxes of individual triangles as
a starting point and grow them until they reach a maximal size, where any
further expansion would violate validity constraints.

Problem Setting. The input to this stage is a closed,
intersection-free, triangle mesh S = (V,F), where V
is the set of its vertices and F the set of faces. The
output of this stage is a set B of axis aligned boxes,
where the geometry of each b ∈ B is encoded via the
positions of its extrema corners (ones with the smallest
and largest coordinate values). A box b is valid if its
intersection with the input shape is a valid height-field
block. We note that for closed volumes, this require-
ment can be recast as requiring the angle between the
outward pointing normal of any input shape triangle
fully or partially inside the box and the milling direc-
tion associated with the block to be acute. Evaluating
this condition explicitly and repeatedly during maximal
box computation can be prohibitively expensive. Below
we describe an efficient way to sidestep such explicit
evaluations.

Initialization. To ensure complete coverage, we initialize the set B with the
bounding boxes of all the mesh triangles. Since each triangle can be part of
at most three outward oriented height-field surfaces, we create seed bounding
boxes associated with only these three orientations. In general normal directions
on a surface change gradually, thus we expect each of these boxes to be valid,
i.e. only overlap triangles which satisfy the acute angle constrain vis a vis our
three initial axis directions. Section 4.3.5 discuses a pre-process which can be
applied to the models to enforce this condition, if not satisfied a priori.

Expansion. We seek to maximize the coverage provided by each box while
satisfying validity conditions. The validity testing can be reduced to two
conditions. First, and most important, we need to test whether the expanded
box overlaps with any triangles whose normals point in the opposite direction

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

34 Heightfields Decomposition

-1

inf
0

milling direction

milling direction

milling direction
(with height controll)

milling direction
(with height control)

printing direction
(with 30° overhang)

printing direction
(with 10° overhang)

Figure 4.3: Example scalar fields for maximal height field block computation.
Left column: The field is infinite next to triangles with normal opposite to
the selected milling direction, negative in the areas whose coverage we seek to
maximize, and zero elsewhere. Middle column: Defining maximal block height
(distance from surface to block base) translates into specifying an infeasible
(infinite field value) region inside the model, where the distance to the surface
along the axis direction is above this maximal height value. Right column: by
relaxing the opposite direction criterion (testing against 90◦ + ε instead of 90◦

we can generate quasi height field blocks useful for 3D printing setup.

to the box’s axis. Second, we must at all times ensure that the dimensions of
the box, and specifically its height, do not exceed the dimensions of the milling
machine processing volume. A naive approach to block computation would be to
grow each box using small steps, e.g. adding one triangle at a time, terminating
growth if and when the validity constraints are violated. However, the first test
in particular can be quite time consuming, and repeatedly performing it for each
box at each expansion step can be prohibitively computationally expensive for
large models. Instead of testing constraints directly, we define a valid solution
space for box expansion and constrain our maximization problem to this space.
The solution spaces are defined independently for each of our six orientations
and are reused for all blocks which share this orientation. They are formulated
so as to simultaneously prevent constraint violation and enable easy continuous
optimization of coverage maximization.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 35

Solution space. We define a set of volumetric scalar fields, one for each
milling direction m, that smoothly encode an energy function we seek to
minimize for all corresponding boxes. We represent each field using a regular
grid defined over a bounding cube of the input model (we set grid spacing to the
average mesh edge length). The field is designed to be infinite outside the valid
region with respect to the axis of interest, negative in the areas whose coverage
we seek to maximize, and zero elsewhere (see Figure 4.3), and is specified as
follows:

• ∞ on vertices of grid cells that contain triangles whose normals form
obtuse angles with the milling direction;

• -1 on vertices of grid cells that contain only triangles whose normals form
acute angles with milling direction;

• ∞ on grid vertices that are further from the boundary than our maximal
height threshold (this part is optional and used only when we seek to
control the height if each block);

• 0 on all other vertices.

We assign continuous values within each cell by using tricubic interpolation.
The energy of a box is then defined as the integral of the scalar field inside the
box:

E(b) =
y

b

s dV

which can be represented as the sum of the integrals over all cells of the regular
grids that intersect the box. Each one of these integrals can be evaluated in
closed form; we provide the derivation of this integral and of its derivatives
in Appendix B. Note that any box b with E(b) 6=∞ by construction satisfies
our block-fabrication constants, with the exception of maximal size which is
discussed in the next paragraph.

Optimization. We simultaneously grow all boxes to cover as much of the
input surface as possible, while still keeping them valid. The boxes are expanded
by minimizing E, subject to additional hard constraints that limit the size of the
boxes to prevent them from growing beyond our maximal size threshold, and
constrain the initial seed triangle associated with each box to remain inside this
box. Both sets of constraints can be expressed as linear inequalities with respect
to the position and dimension of the box Cb ≤ d, leading to the following
non-linear optimization with linear inequality constraints:

arg min
b

E(b) (4.1)

s.t.Cb ≤ d (4.2)

We convert this constrained optimization into an unconstrained one using
logarithmic barriers, and minimize it using BFGS with bisection line search.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

36 Heightfields Decomposition

The optimization is stopped when the residual is smaller than 10−6 of the model
bounding box diagonal.

Heuristic Pruning. The collection of maximal height blocks extracted using
this basic procedure is highly redundant. To improve performance we reduce
the set of processed boxes as follows. First, instead of considering all three
valid directions for each seed triangle, we only use the milling direction closest
to its normal. Second, we seed (and grow) boxes at random triangles, evenly
distributed over the surface, and stop seeding new boxes as soon as the entire
surface is completely covered, i.e. as soon as all the triangles of the surface have
been assigned to at least one height block. While these heuristic could in theory
lead to inferior results, they work well in practice, as we demonstrate in Figure
4.4 (bottom part), where we compare the results obtained with and without
pruning. The difference in quality is negligible, but the heuristics reduce the
computation cost from 47 to 2 minutes.

Minimal Covering

After maximally expanding all block boxes, we compute a minimal subset of
them which entirely covers the surface. Computing such a set amounts to solving
the classical minimal set cover problem, known to be NP-complete [Cormen,
2009]. We obtain a solution by casting it as an integer linear programming
problem:

arg min 1Tx (4.3)

s.t.
∑
i

xi ai ≥ 1 (4.4)

xi ∈ {0, 1} (4.5)

where xi is the i-th entry of x, a vector of binary variables that indicates
if the box ai is kept in the minimal covering. ai is a binary vector with as
many entries as the faces of the input, and where a value of 1 indicates that
the corresponding face is contained in the box. We use an off-the-shelf solver
(http://www.gurobi.com/) to obtain a solution. While in theory the runtime
for this step can be exponential, in practice the solver converges to a solution
in minutes (Table 4.1).

4.3.3 Overlap Resolution

Given the set of height-field blocks produced by the minimal covering, we seek
to resolve the overlaps between them with a minimal increase in the number of
blocks and without introducing thin fragile features.

Single Pair. Before addressing the general case, we consider overlap resolution
on an individual pair of blocks b1 and b2 (Figure 4.5). The overlap between

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

http://www.gurobi.com/

Heightfields Decomposition 37

Figure 4.4: We enable users to balance the number of height-field blocks against
the amount of material necessary to fabricate the object. Top: the block height
is unconstrained, thus the blocks are free to expand in the interior and cover
the whole volume. Bottom-Left: the block height is highly constrained, thus
leaving a big void in the interior of the model and producing thinner blocks
which would require much less time and material to be fabricated. Specifically,
the model on top is composed of 2 height-field blocks and its fabrication requires
35% more material than the model on bottom left, which is composed of 6
blocks. Bottom-Right: height-field block decomposition with height constraints
and with no heuristic pruning. The difference in quality is negligible, but the
pruning reduces the computation cost from 47 to 2 minutes.

the blocks can always be eliminated by subtracting one block from another, e.g.
b2 from b1. In all but some special cases, which we will discuss later, such a
subtraction keeps the number of blocks constant. Post-subtraction, the block
b1 \ b2 may no longer satisfy the validity constraints (Figure 4.5a). Depending
on the configuration, reversing the order and computing b2 \ b1 may result
in two valid blocks, but it is not guaranteed. In many instances, no order
can produce a valid result (Figure 4.5c). Invalid blocks created by subtraction
have multiple bases - i.e. polygons orthogonal to the milling direction. Each
such block bi \ bj can be therefore converted into a set of valid blocks by
splitting it along one or more of the planes it shares with block bj , such that
each such base defines a separate block. While this solution is guaranteed to
work, we want to minimize the number of such splitting operations. The basic
overlap resolution method for two blocks b1 and b2 can be hence formulated
as follows: (1) if only one of the two differences is valid use this difference to
form a solution (Figure 4.5a); (2) if both b1 \ b2 and b1 \ b2 are valid blocks,

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

38 Heightfields Decomposition

Blue block first Green block first

(a)

(b)

(c)

Figure 4.5: Different block processing orders result in different decompositions:
(a) processing the blue block before the green one produces two valid height
fields — inverting the order the blue block ceases to be a height field; (b)
independently on the processing order, two valid height blocks are produced;
(c) no valid solution exists, independently on the processing order. In the latter
case, splitting one of the boxes allows for a valid processing order.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 39

Remove edge b0 b3

b0

b3 b1

b2

Split b3\b0 into b3.1 and b3.2
and update edges

b0

b3.1 b1

b2

b3.2

b0

b1

b2

b3.2

b3.1

Topological sorting
of the inverted DAG
(smaller blocks first)

b0

b1

b2

b3.2

b3.1

b0

b1

b3.1

b3.2

b2

b0

b3 b1

b2

b0

b1

b2

b3

Invert DAG edges

b0

b3.1 b1

b2

b3.2

Figure 4.6: Conflicts between intersecting blocks are encoded in a directed graph.
An edge bi → bj means that bj \bi is not a height field. If the graph is acyclic
we are guaranteed that, without splitting any box, subtracting blocks using an
inverse topological order would produce a valid height-field block decomposition.
If the graph contains cycles, we reduce it to a DAG by iteratively removing
edges (and splitting the blocks accordingly). Among all the possible inverse
topological orders, we select the one that maximizes the size of the smallest
height-field block.

perform the subtraction operation that maximizes the smallest output block
(Figure 4.5b); (3) otherwise, split one of the difference blocks to obtain valid
sub-blocks, selecting the refinement that maximizes the smallest output block
(Figure 4.5c).

Multi-Block. We extend this framework to the multi-block scenario by cast-
ing overlap resolution as finding a sequence of subtraction operations that
minimizes the number of splits required to ensure output validity. When split-
ting is unavoidable, we prioritize split operations that avoid producing very
small blocks.

We represent the relation between adjacent height-field blocks using a
directed graph whose vertices represent blocks; each graph edge represents
a subtraction order dependency between its end vertices. More formally, we
introduce an edge from b1 to b2 if and only if the difference b2 \b1 is not a valid
height block. Note that it is possible to have two opposite edges connecting
the same pair of vertices if both subtraction orders produce invalid blocks
(Figure 4.5c). Cycles in this graph exactly correspond to scenarios where
splitting cannot be avoided.

To obtain the desired subtraction order, if the initial graph contains cycles,
we first transform it into a directed acyclic graph (DAG) by breaking all the
cycles (and splitting the associated blocks). We then produce a valid subtraction
order by computing an optimal topological order on this acyclic graph. The
overall complexity of this step is O(|s|(n+ e)(c+ 1)), where |s| is the number of
splits, n is the number of vertices, e is the number of edges, and c is the number
of cycles.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

40 Heightfields Decomposition

Figure 4.7: To keep the number of height-field blocks low we trade faithfulness
for complexity. Specifically, given a detailed model we run our method on a
pre-filtered version with no high frequencies (left). We then maximally restore
the details while preserving the height filed property everywhere (middle, right).

Reduction to a DAG To break cycles in the graph we iteratively select an
edge b1 → b2 on each cycle and split b2 \ b1 along the height field direction
of b2, generating two or more non-overlapping valid blocks. We are sure that
they are valid relying on a simple assumption: cutting a block with any plane
containing the milling direction keeps requirements Axis, Base, and Height-Field
in both sub-blocks. The vertices corresponding to the generated sub-blocks,
denoted b2,1, . . . ,b2,n, are then added to the graph. Note that each sub-block’s
vertex can at most inherit the edges of its parent, excluding b1 → b2 (since
there is no intersection between b2,1 and b2,2 and neither of them intersects
b1). As a consequence, if the block b2 participated in n cycles, its sub-blocks
can participate at most in n − 1 cycles. This observation guarantees that
each refinement step reduces the total number of cycles that graph vertices
participate in, and consequently ensures that the reduction process terminates
in a finite number of steps, producing a DAG.

We detect all the cycles in the graph using Johnson’s algorithm [Johnson,
1975]. Among all the edges participating in a loop, we give priority to the one
that maximizes the size of the smallest height block created. The splitting
algorithm stops when a DAG is obtained.

Topological Sorting. We produce a valid subtraction sequence by computing
an optimal topological order on the resulting DAG. Producing a linear ordering
of a DAG’s vertices such that for every directed edge bi → bj , bi comes before
bj is a classical problem in graph theory. Notice that our directed edges encode
pathological splitting orders, we therefore aim to find an inverse topological
sorting of the DAG vertices (i.e., for every directed edge bi → bj , bj should
come before bi). We pre-process the DAG by inverting the orientation of each
directed edge (i.e., transforming the roots in leaves, and vice versa) and run a
standard algorithm for topological sorting [Kahn, 1962]. Among all the possible
orderings, we favor the one that maximizes the size of the smallest height-field
block. To do so, we use Kahn’s iterative algorithm [Kahn, 1962], prioritizing

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 41

the vertices associated with the smallest blocks. In short, the algorithm works
as follows: at each iteration we find the roots of the graph (vertices with no
incoming edges — if the graph is a DAG at least one root always exists); we
order them from the smallest to the biggest block, and use this order to perform
the subtraction, removing their corresponding vertices from the DAG. We repeat
the process, iteratively looking for new roots until all the vertices in the DAG
have been processed (Figure 4.6).

4.3.4 Improving Blocks Size and Shape

A shortcoming of the method described so far is that it does not explicitly
prevent the generation of tiny blocks or blocks with narrow protruding features,
which could potentially break during fabrication (due to the stress induced by
the milling tip) or during assembly. Such features are usually generated when
performing Boolean operations between blocks with close by faces with similar
orientation. We describe here a greedy twofold strategy that has no theoretical
guarantees but that in our experiments successfully removes narrow features,
leading to the formation of well shaped height blocks.

Block Snapping and Shrinking. We process the blocks selected by the
minimal covering (Section 4.3.2), aiming to minimize the number of intersections
between blocks before starting the overlap resolution (Section 4.3.3). First, we
consider all pairs of face-adjacent blocks, that is blocks with same orientation
faces for which the distance between these faces is less than a fixed amount
(the default is one grid unit, the user can choose to change it). We sort all
the candidate pairs according to these distances, and adjust their dimensions
reducing the distance to zero, making them perfectly face-adjacent. We then
consider the remaining set of intersecting blocks, and try to shrink them in
order to avoid overlaps. Notice that shrinking blocks may leave some portion of
the surface uncovered, we therefore apply block shrinking if and only if complete
surface covering is preserved. These steps result in a conflict graph with less
arcs and typically less cycles, thus reducing the number of splits necessary to
reduce it to a DAG. On average, using this strategy we decreased the number
of box splits by 50%.

Modified Processing Order. If, by processing the blocks in the order
computed in Section 4.3.3, we generate a tiny height-block or a narrow feature,
we rollback the operation and modify the processing order, giving the current
block higher priority w.r.t. all the blocks it overlaps (Figure 4.8). This maximizes
the size of the sub-blocks derived from such height-block and typically reduces
the number of narrow features produced. We automatically detect small blocks
by measuring their volume [Zhang and Chen, 2001], and detect tiny features
by measuring the distance between pairs of block side and base edges. More
advanced approaches [Zhou et al., 2013] could be used instead but in our

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

42 Heightfields Decomposition

b0

b1

b2

b1 ,b0 ,b2Processing order:

b0 ,b2 ,b1Processing order:

WEAK

Figure 4.8: Left: a portion of surface is covered with three blocks: b0, b1, b2.
In this configuration any processing order would produce three valid height
blocks. Right: processing b1 after b0, b2 produces an undesirable narrow feature
(top). We detect such configurations and locally modify the block processing
order: giving higher priority to b1 produces a better height block decomposition
(bottom).

experiments this was not necessary since all the thin features were detected by
the two criteria above.

Post Processing. The boolean processing may result in adjacent blocks
with same height field direction. To reduce block count we merge them into
a single block, either by raising the base of the lower block along the height
field direction, or by lowering the base of the higher block. The condition for
performing the first operation is that there are no surface triangles in between
the old and the new base. The condition for performing the second operation
is more complex: we need to make sure that the new block doesn’t intersect
any other block in the decomposition, and that it still satisfies the height field
constraint. After moving one of the two bases, we merge the two blocks. This
post-processing typically merges one or two pairs of blocks.

4.3.5 Faithfulness vs Complexity

Enforcing strict fabrication constraints on highly detailed models often results
in an excessive number of height-field blocks. For practical applications, exact
fidelity to the input can often be sacrificed to reduce block count and facilitate
easier fabrication. We provide an optional mechanism that allows users to
reduce reconstruction accuracy, or faithfulness, in exchange for a lower block
count. We note that smoother, or less detailed, models typically require signifi-
cantly fewer height-field blocks to reconstruct than their detailed counterparts.
We consequently achieve our target using a two step procedure that removes

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 43

high-frequency surface details before the decomposition, and reintroduces the
removed details into each block subject to preserving the fabrication constraints
(Figure 4.7).

To remove high-frequency details from the input shape we use the low-
pass filter proposed in [Taubin, 1995]. After computing the height-field block
decomposition we reintroduce the high-frequency details using a variation of
the Laplacian surface reconstruction framework [Sorkine, 2006], enriched with
height field constraints that ensure that the vertices assigned to each block
remain above its base with respect to the milling direction and that no triangle
flips its orientation. Specifically, after the block decomposition of the smooth
geometry is computed, every vertex vi is assigned to a block bvi

, which has
a milling direction mvi

. We then reintroduce the details by minimizing the
following energy:

arg min ‖∆v − δ‖2s.t. (4.6)

vi ∈ bvi
(4.7)

nt(v) ·mt ≥ 0 (4.8)

where δi = 1
|Ni|

∑
vj∈Ni

(vi − vj) are the differential coordinates of the original

mesh [Sorkine, 2006], and nt is the normal of the triangle t. Equation 4.7
ensures that every vertex is constrained to stay above the block’s base and can
be modeled with a set of linear inequality constraints. Equation 4.8 prevents
triangle normals from flipping and is a quadratic condition on the vertex
positions. We minimize this energy using coordinate descent, by optimizing one
vertex at a time and freezing the others. The per-vertex optimization is solved
with Newton iterations and it typically converges within 5 iterations, recovering
most of the details of the input meshes (Figure 4.7). Specifically, the average
distance between the two models, measured with Metro [Cignoni et al., 1998],
is less than 1× 10−4 times the bounding box diagonal.

Initialization Constraints. Given an input mesh, we assume that bounding
boxes of individual triangles define valid height blocks. This condition can be
violated in two scenarios. In the first case the top or outer surface defined
by the intersection of the box and the input model may not be a height field.
This situation can only occur on meshes with high-frequency features, and it
is solved using our high-frequency removal preprocess. Initial blocks can, in
theory, intersect the input surface. This situation can only occur if the mesh
triangle size is larger than the local feature size. Such situations can always be
avoided by refining the mesh using one or more rounds of one-to-four triangle
subdivision.

4.4 Results

Throughout the paper we demonstrate a range of models decomposed into
height-field blocks using our approach, ranging from relatively simple (Spiky

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

44 Heightfields Decomposition

cube) to highly complex (Chinese lion, Lion vase) and from relatively smooth
(Kitten) to highly detailed (Buddha, Bimba). All our output decompositions
are fabrication ready and strictly satisfy all validity conditions. The number of
blocks in our decompositions varies from single digits (Moai, Max Planck) to
63 for Fertility.

4.4.1 Milled Results.

We milled four objects from solid blocks of two different woods: pinewood and
beechwood; the former is softer and easier to mill while producing less detailed
results, the latter is harder and needs a longer milling time but leads to more
detailed models.

We milled Moai (Figure 4.10) and MaxPlanck (Figure 1.4) from the pinewood
blocks; Buddha and Egyptian Statue from the beechwood blocks (Figure 4.10).
Moai was milled with a Roland Modela MDX40, while MaxPlanck, Buddha and
Egyptian statue have been milled with a Stepcraft-2/840 Desktop CNC System.

Moai is assembled from 12 blocks and is 27 centimeters tall; MaxPlanck from
8 blocks and is 22 centimeters tall; Buddha from 8 blocks and is

19 centimeters tall (we skipped the curved base since the model
does not stay straight with it); the Egyptian Statue from 11
blocks and is 32 centimeters tall. They have been assembled
using wood glue. After assembly, the seams on each model
have been covered with wood putty and sanded with fine grain
sandpaper. This procedures hides the seams, which are only
visible in the discontinuities of the wood pattern. We tested
an alternative procedure on Moai statuette: we covered it with
water-based enamel and then polished it. The final appearance

is shown in the inset.

4.4.2 Internal Framework.

Restricting our milling directions to the six
major axis does not only simplify the
assembly of small models, where the
large overlaps can be easily covered
with glue or kept together using metal
L-shaped connectors, but it also drasti-
cally simplifies the construction of large
architectural-scale objects. In this sce-
nario, the interior of the shape can be
realized with a supporting framework
made of metal beams, which follows
the internal edges, and is kept together

with a single type of joints: since the height blocks are axis aligned, the only
possible intersections of the beams are multiples of 90 degrees. The required

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 45

joints are simple to fabricate and reusable. A virtual example for the Egyptian
Statue in the inset.

4.4.3 Height Control.

By controlling the maximal height of the produced blocks users can control
the amount of material necessary to fabricate the object (Figure 4.4), trading
material savings for increased block count.

4.4.4 High-Frequency Models.

While our method can directly generate brute-force decompositions for high-
frequency inputs, such decomposition would inevitably lead to high block counts,
due to the very restrictive fabrication constraints inherent in 3-axis CNC milling.
Our optional high-frequency filtering algorithm (Section 4.3.5) leads to much
simpler decompositions, while losing minimal surface details, as shown in Figure
4.7.

4.4.5 Comparison with [Hu et al., 2014].

As noted earlier, in contrast to our framework the method of [Hu et al., 2014]
has no direct control on how far its outputs deviate from the height-field or
pyramidality constraints, and demonstrate results where these constraints are
far from satisfied. To compare the two approaches, we repeat the experiment
proposed in Figure 23 of [Hu et al., 2014] and show the results in Figure 4.11. Our
method introduces less blocks to decompose the model, and, more importantly,
our blocks are millable, while the outputs of Hu et al. do not satisfy the
height-field property (highlighted with red ovals in Figure 4.11) and thus can
only be fabricated with a 3D printer.

4.4.6 3D Printing.

Our pipeline is designed to produce height-field blocks, but, with a minor
modification, becomes a powerful tool to produce decompositions tailored
for FDM 3D printers. These printers require support material to sustain
overhanging parts with angles larger than 35-40 degrees. The support does
not only increases printing time and wastes material, but also lowers surface
quality [Zhang et al., 2015]. Our method can be used to decompose an object
into blocks whose top surface contains overhang that are strictly smaller than a
printer-specific threshold by simply relaxing the height field condition in Section
4.3.2, assigning an infinite value to the scalar field only when triangles have
a larger overhang. We show an example of a decomposition with a maximal
overhang of 30 degrees in Figure 4.12.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

46 Heightfields Decomposition

Model
Timing

Blocks Height
MHFBC MC OR B

Airplane 1′41′′ 1′′ 1′′ 9′′ 11 ∞
Batman 33′44′′ 20′′ 1′′ 54′′ 8 0.15
Bimba 25′23′′ 3′′ 0.2′′ 39′′ 16 ∞
BU (orientation) 17′40′′ 9′′ 2′′ 27′24′′ 16 0
BU (no orientation) 71′3′′ 9′′ 1′′ 23′′ 9 0
Buddha 61′37′′ 15′′ 1′′ 33′′ 8 (7 milled) 0.125
Chinese Lion 7′38′′ 3′′ 2′′ 59′′ 27 0.125

Cube Spike
2′35′′ 14′′ 0.1′′ 6′′ 2 ∞
1′19′′ 4′′ 0.1′′ 9′′ 6 0.4

47′21′′† 6′48′′ 0.1′′ 13′′ 6 0.4
David 26′27′′ 9′′ 0.2′′ 18′′ 7 0.075
Dea 31′33′′ 20′′ 0.2′′ 21′′ 7 0.075
Egea 15′56′′ 6′′ 0.1′′ 7′′ 6 0.1
Egyptian Statue 16′7′′ 6′′ 5′′ 21′′ 11 0.05
Eros 39′33′′ 10′′ 1′′ 1′1′′ 10 0.125
Fertility 15′32′′ 11′′ 32′′ 10′20′′ 63 ∞
Gentildonna 36′23′′ 9′′ 0.1′′ 20′′ 10 0.125
Kitten 21′25′′ 6′′ 2′′ 59′′ 25 0.05
Lincoln 8′23′′ 6′′ 0.6′′ 1′41′′ 14 0.125
Lion Vase 29′24′′ 8′′ 0.4′′ 14′′ 10 0.175
Max Plank 15′59′′ 10′′ 0.3′′ 14′′ 8 ∞
Moai 12′47′′ 4′′ 0.2′′ 9′′ 12 0.225
Pensatore 11′4′′ 9′′ 0.1′′ 29′′ 7 0.1
† No pruning

Table 4.1: Model statistics: computation time (split into Maximal Height-Field
Block Computation (MHFBC), Minimal Covering (MC), Overlap Resolution
(OR), CSG Operations (B)); number of blocks; and the block height maximum
used (as percentage of model diagonal, ∞ means no height limit).

4.4.7 Implementation Details.

We implemented our algorithm in C++, using Eigen [Guennebaud et al., 2010]
for linear algebra routines, Gurobi [Gurobi,] for branch and bound, and libigl for
mesh booleans [Zhou et al., 2016,Jacobson et al.,]. We run all our experiments
on a workstation with a 4-cores Intel i7-4790K processor clocked at 4.0 Ghz
and 16 Gb of memory. Our method takes under one hour on even the most
complex model (Buddha) with the runtime dominated by the initial maximal
size block computation. A summary of the timings and number of height-field
blocks for all our experiments is shown in Table 4.1.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 47

4.5 Limitations and Concluding Remarks

We presented an automatic and robust pipeline to decompose a triangle mesh
into a collection of non-overlapping, valid height-field blocks, which can be
directly manufactured using a 3-axis CNC milling machine. Our method allows
for producing real-world replicas of complex 3D geometries from materials
such as stone, wood, or styrofoam, none of which can be processed by additive
manufacturing methods. Our method is compatible with existing milling systems
and mixed manufacturing techniques, and can be used to produce high quality
real-life replicas of complex virtual geometries in a range of sizes.

Our pipeline is automatic and robust: the only hard requirement on the
input is that it should be a closed surface. The number of blocks we produce is
dependent on the input model complexity, and can increase dramatically for
models with narrow prominent features or high genus, resulting in objects that
may be hard to assemble. Manual decomposition and independent processing
of the different parts can help reduce block count. Our pipeline is also heavily
affected by the orientation of the model, which might lead to decompositions
with more pieces than necessary. While our canonical orientation algorithm
strive to ameliorate this problem, it is not guaranteed to succeed. An example is
shown in Figure 4.14, where a manual orientation of the model leads to a simpler
decomposition. A second limitation is that while we optimize to avoid blocks
with small features, we cannot guarantee to find the optimal decomposition with
the smallest number of such blocks. This is an interesting theoretical avenue
for future work, since in our experiments, our greedy algorithm is sufficient to
avoid the most problematic cases that lead to fabrication failures.

We expect our algorithm to have a large impact in digital fabrication
labs, since it provides an automatic and effective way to exploit 3-axis milling
machines to fabricate generic shapes. We will release a complete open-source
implementation of our algorithm with an open source license to encourage its
adoption.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

48 Heightfields Decomposition

Figure 4.9: Our method produces valid, compact decompositions for complex
models containing: non-trivial topology (e.g., Fertility), thin features (e.g., the
ears of the Kitten) and large portions not aligned with the global frame (e.g.,
the Chinese Lion’s body) for which manual decomposition is highly challenging
to compute, resulting in 27 blocks for the Chinese Lion, 25 for Kitten and 63
for Fertility.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 49

Figure 4.10: A gallery of decompositions computed with our algorithm and
fabricated in wood using a 3-axis milling machine.

Optimal
decomposition [Hu et al. 2014] Ours

Figure 4.11: Comparison with [Hu et al., 2014]: pyramidal decomposition
(middle) produces ten blocks, six of which violate the height-field condition
(see red ovals). Our method (right) decomposes the shape into seven valid
height-field blocks, one more than the optimal decomposition (left). Notice that
we re-oriented the model before running our method, according to the strategy
described in Section 4.3. For the sake of better visual comparison all the models
are shown in the same position.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

50 Heightfields Decomposition

Figure 4.12: By relaxing the height field constraint we can decompose an object
into blocks whose top surface contains overhangs that are strictly smaller than
a printer-specific threshold. Here we show an example of a decomposition with
a maximal overhang of 30 degrees for the Lion Vase dataset (left, middle).
Notice from the side view that the lion mouth contains a considerable amount
of overhangs. Since the threshold we set is compatible with that of common
FDM printers, we safely printed each block without using support structures,
saving time and material, and achieving better surface quality (right).

Figure 4.13: Additional results generated using our method.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Heightfields Decomposition 51

Figure 4.14: Our canonical orientation algorithm is not guaranteed to produce
decompositions with minimal number of height blocks. A failure example is
illustrated here: with automatic orientation the BU statue is decomposed in
16 blocks (top); with manual orientation the number of blocks goes down to 9
(bottom). Finding the orientation that minimizes the number of blocks in the
decomposition is a challenging problem that we plan to tackle in future work.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

52 Heightfields Decomposition

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification Masks 53

Appendix A

Simplification Masks

We describe here the sets of masks used for the automatic simplification algo-
rithm described in section 3.3.1. We used 18 different initial masks. Considering
all their rotations around some well-known axis, the total number of masks is
340. There are two main types of masks:

• Masks with more than one set of Points of Interest;

• Masks with only one set of Points of Interest.

The masks of the second type are very simple: if we find a set of adjacent
cubes corresponding to the signs of the mask, we just switch the signs of its
Points of Interests. The first type of masks are harder to be examined, because
they have more than one set of Points of Interest. We need to choose one of
these sets using area of the involved charts. We list all the masks in the next
sections.

A.1 Masks with more than one set of Points of
Interest

We designed 10 different types of masks with more than one set of Points of
Interest. They are listed from figure A.1 to figure A.7.

A.2 Masks with only one set of Points of Inter-
est

We designed 10 different types of masks with more than one set of Points of
Interest. They are listed from figure A.8 to figure A.11.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

54 Simplification Masks

Figure A.1: This mask represents a step between two facets with normal of
cat. 1 and a facet with normal of cat. 2. The two sets of Points of Interest
are circled in cyan and orange respectively, and one of the two sets is selected
according to the area of the two facets. This mask can be rotated, generating a
total number of 24 masks.

Figure A.2: This mask represents a step between two facets with normal of
cat. 2 and a facet with normal of cat. 1. The two sets of Points of Interest
are circled in cyan and orange respectively, and one of the two sets is selected
according to the area of the two facets. This mask can be rotated, generating a
total number of 24 masks.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification Masks 55

Figure A.3: The masks shown in the figure are the reflection of each other, and
they represent a step between two facets with normal of cat. 1 and a facet with
normal of cat. 3. The two sets of Points of Interest are circled in cyan and
orange respectively, and one of the two sets is selected according to the area of
the two facets. These masks can be rotated, generating a total number of 48
masks.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

56 Simplification Masks

Figure A.4: The masks shown in the figure are the reflection of each other, and
they represent a step between two facets with normal of cat. 3 and a facet with
normal of cat. 1. The two sets of Points of Interest are circled in cyan and
orange respectively, and one of the two sets is selected according to the area of
the two facets. These masks can be rotated, generating a total number of 48
masks.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification Masks 57

Figure A.5: This mask represents a step between two facets with normal of
cat. 2 and a facet with normal of cat. 3. The two sets of Points of Interest
are circled in cyan and orange respectively, and one of the two sets is selected
according to the area of the two facets. This mask can be rotated, generating a
total number of 24 masks.

Figure A.6: This mask represents a step between two facets with normal of
cat. 2 and a facet with normal of cat. 3. The two sets of Points of Interest
are circled in cyan and orange respectively, and one of the two sets is selected
according to the area of the two facets. This mask can be rotated, generating a
total number of 24 masks.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

58 Simplification Masks

Figure A.7: The masks shown in the figure are the reflection of each other, and
they represent a step between two facets with normal of cat. 3 and a facet with
normal of cat. 2. The two sets of Points of Interest are circled in cyan and
orange respectively, and one of the two sets is selected according to the area of
the two facets. These masks can be rotated, generating a total number of 48
masks.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification Masks 59

Figure A.8: The masks shown in the figure are the reflection of each other, and
they represent a ”pyramid” on a local surface with facets with normals which
don’t belong to cat. 3. The single set of Points of Interest is circled and the
points are switched if the configuration of points is found on the regular lattice.
These masks can be rotated, generating a total number of 12 masks.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

60 Simplification Masks

Figure A.9: The masks shown in the figure are the reflection of each other, and
they represent a ”pyramid” on a local surface with facets with normals which
don’t belong to cat. 2. The single set of Points of Interest is circled and the
points are switched if the configuration of points is found on the regular lattice.
These masks can be rotated, generating a total number of 24 masks.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Simplification Masks 61

Figure A.10: The masks shown in the figure are the reflection of each other, and
they represent a local configuration where the surface has facets with normals
which belong to cat. 3. The single set of Points of Interest is circled and the
points are switched if the configuration of points is found on the regular lattice.
These masks can be rotated, generating a total number of 16 masks.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

62 Simplification Masks

Figure A.11: The masks shown in the figure are the reflection of each other,
and they represent a ”pyramid” on a local surface with facets with normals
which don’t belong to cat. 3. The single set of Points of Interest is circled and
the points are switched if the configuration of points is found on the regular
lattice. These masks can be rotated, generating a total number of 48 masks.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Box-Integration of a Tricubic Scalar Field. 63

Appendix B

Box-Integration of a
Tricubic Scalar Field.

Let B be a an axis-aligned box defined by its two extreme points p = (px, py, pz)
and q = (qx, qy, qz) and L a regular lattice. We define S as the set of all the
cubes (su,v,w) in the lattice L partially or completely contained in B:

S : {su,v,w ∈ L|su,v,w ∩B 6= ∅}

and we define D as the set of triplets of indexes in S:

D : {(u, v, w)|su,v,w ∈ S}

Each cube su,v,w in L is defined by its two extreme points (xm, yn, zp) and

(xm+1, yn+1, zp+1) and to each cube we associate a set of coefficients a
(u,v,w)
i,j,k

for performing the tricubic interpolation inside su,v,w.
The interpolated value f in a generic (x, y, z) point inside su,v,w is:

f(x, y, z) =

3∑
i=0

3∑
j=0

3∑
k=0

(
a
(u,v,w)
i,j,k xiyjzk

)
The energy to minimize is given by the integral over B, hence the sum of all
the integrals over the cubes inside B:

min
∑

u,v,w∈D

∫ xmax,ymax,zmax

xmin,ymin,zmin

f(x, y, z)

where:

xmin =

{
xm if xm > px
px otherwise

xmax =

{
xm+1 if xm+1 < qx
qx otherwise

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

64 Box-Integration of a Tricubic Scalar Field.

and similarly for y and z.
The parameters are the coordinates of the points defining B. To be sure

that the starting box will always cover the first primitive, we sum to the energy
a barrier function tending to +∞ when one of the coordinates of B is too near
to one of the coordinates of the points to cover (i.e, the endpoints of a segment),
and is 0 when the coordinates are enough far from these points as in [Schüller
et al., 2013].

Suppose to have a set C of points c = (cx, cy, cz) to be covered by our box
B. For each c ∈ C we will have a function for p and for q:

Φc,t(px) =

+∞ if px ≥ cx

1
g(px)

if cx − t < px < cx
0 if px ≤ cx − t

Φc,t(qx) =

0 if qx ≥ cx + t

1
g(qx)

if cx < qx < cx + t

+∞ if qx ≤ cx

and similarly for y and z, where t is 1
10 of the lattice’s edge, and g is:

g(x) =
1

t3
x3 − 3

t2
x2 +

3

t
x

Defining
Φc,t(p) = Φc,t(px) + Φc,t(py) + Φc,t(pz),

Φc,t(q) = Φc,t(qx) + Φc,t(qy) + Φc,t(qz)

we can add the barriers to the energy function to minimize:

min
∑

u,v,w∈D

∫ xmax,ymax,zmax

xmin,ymin,zmin

f(x, y, z)s +
∑
c∈C

(Φc,t(p) + Φc,t(q)) .

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Valid Height-Block Decomposition via AA Box Splitting. 65

Appendix C

Valid Height-Block
Decomposition via AA Box
Splitting.

Let B1 and B2 be a pair of intersecting axis aligned height boxes associate to
the milling directions m1 and m2, which are in the set (±X,±Y,±Z). Since B1

and B2 are axis aligned, their intersection BI = B1 ∩B2 is an axis aligned box.
The planes on which the six facets of BI lie, partition both B1 and B2 into
eight sub-boxes each, namely B1.1, . . . , B1.8 and B2.1, . . . , B2.8. Notice that,
since B1 and B2 intersect, there always exist two indices i, j ∈ [1, 8] such that
B1.i ≡ B2.j ≡ BI.

Let us now consider which milling directions, between m1 and m2, could
be chosen for these sub-boxes. We can observe that: (i) B1, B2 and all the
sub-boxes are axis aligned, therefore the angle between the box facets and the
milling direction is either 0◦ or 90◦; (ii) each sub-box of B1 (B1.1, . . . , B1.8) has
m1 as candidate milling direction, and each sub-box of B2 (B2.1, . . . , B2.8) has
m2 as candidate milling direction. The only exception is BI, which has both
m1 and m2 as candidate milling directions.

From (i) and (ii) descends that any sub-box has at least one valid milling
direction with an axis aligned facet as supporting base. In other words a valid
height block decomposition obtained by splitting the original boxes using axis
aligned planes always exists.

Notice that this is true only for the special case of axis aligned boxes and
milling directions; in any other case condition (i) would not be satisfied, as the
angle between the box facets and the milling direction may be greater than 90◦,
thus violating the height field condition.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

66 Valid Height-Block Decomposition via AA Box Splitting.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 67

Appendix D

Skeleton-driven Adaptive
Hexahedral Meshing of
Tubular Shapes

D.1 Introduction

The quest for volumetric meshes for physically based simulations has dramati-
cally increased in recent years. While classical applications deal with mechanical
objects (e.g., in the aeronautical, mechanical and medical industries) new ap-
plications have emerged (e.g., in the movie and gaming industry, as well as in
the biomedical field) which deal with natural shapes, often coming in the form
of articulated objects. Special effects involving fluids and deformable objects
are ubiquitous in many of the most recent movie productions and videogames.
Likewise, the accurate simulation of human tissues and organs widely extends
the diagnostic power of CT data as well as of virtual surgery. No matter whether
models are taken from reality or imagination, they are requested to behave and
interact with the virtual world as if they were real.

Physically-plausible simulations [Nealen et al., 2006] require a volumetric
discretization of all elements of a scene interacting with each other. This
need raises the bar for meshing algorithms, often shaped around precise target
shapes [Blacker, 2001] and now required to provide new tools to automatically
generate industry-ready meshes from shapes that are definitely different: no
more mechanical parts exposing sharp edges and regular patterns, but shapes
mimicking living beings.

To this aim, although high quality tetrahedral meshes can be reliably gener-
ated with existing methods [Alliez et al., 2005], hexahedral meshes are usually
preferred due to their superior numerical properties and ability to keep the
resolution lower [Kremer et al., 2014, Blacker, 2001]. Structured hexahedral
meshes are often preferred to semi-structured or unstructured ones because they

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

68 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

can be more efficiently stored using specialized data structures, yet because
they are the models of choice for many simulations where a strict alignment
of elements is required [Gao et al., 2015b,Ruiz-Girones, 2011]. A hexahedral
mesh is structured when it is composed of a single regular volume, or it can be
decomposed into a few sub-volumes, each one with the connectivity of a regular
grid [Tautges, 2004].

On the one hand, manually creating high-quality structured hexahedral
meshes is a laborious task that can take days of work. On the other hand,
automatic meshing is a challenging open problem, with much work happening
in recent years.

In this work we restrict our attention to articulated shapes whose general
structure is well captured by a curve-skeleton [Tagliasacchi et al., 2016,Cornea
et al., 2007]. Shapes in this category include, but are not limited to: humans
and animals; articulated (possibly imaginary) creatures; tree-like structures like
vessels; and plants. This restrictive choice to shapes for which a curve-skeleton
can be extracted is based on the fact that physically-based simulations on such
shapes are common not only in medicine and biology but also in the animation
industry, where most characters created by digital artists belong to this category.

We propose an automatic algorithm that, taking in input a surface mesh and
its curve-skeleton, produces a structured hexahedral mesh covering the volume
bounded by the input surface. Our method is fast, one-click, easy to reproduce
and it does not require any parameter tuning by the user. The hexahedral
meshes we produce have high quality and nicely align with the main features of
the target surface, a key component for accurate simulations [Blacker, 2001].

The main contribution of our paper is twofold:

• We extend the work of [Usai et al., 2015] from surfaces to volumes,
automatically generating hexahedral meshes that directly encode the
structure of the input shape, given by its curve-skeleton (Section D.3);

• We propose a sampling technique for the curve-skeleton to control density
along the skeleton arcs, and a set of volumetric subdivision schemes to
control density across the skeleton arcs. Our density control system nicely
adapts to the local thickness of the shape, minimizing the resolution of
the model and reducing the variance of the element sizes (Section D.5).

D.2 Related work

The generation of high quality hex meshes filling a target surface has been object
of research since decades. An exhaustive survey of the literature in the field
is beyond the scope of this paper. Here, we just recap only the most relevant
approaches, grouped by meshing technique. We refer the reader to [Blacker,
2001,Tautges, 2001] for further details on classical approaches.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 69

Skeleton-based approaches are the most related to our work. When the
meshing process is driven by curve-skeleton, the critical part is the discretization
of junctions, where incoming arcs from different directions meet. In [Lin et al.,
2012] a split-and-merge meshing method is presented. Each part of the skeleton
is meshed separately, then all the components are grafted together. The method
is validated on a set of simple models, where the most complex junction has
valence four. For complex shapes like the octopus in Figure D.10, where eight
limbs meet the core of the shape at the same point, it is not clear whether this
method would produce a valid result. In the best case it would fail to produce the
right topological structure, converting the corresponding valence nine junction
into a set bifurcations. Our method produces a hex mesh that encodes the
correct structure of the octopus without introducing high valence vertices, thus
providing the right balance between structure and mesh complexity. Overall,
we generate hexahedral meshes with higher quality (see Section D.7).

In [Zhang et al., 2007] a sweeping method to mesh tubular shapes is proposed.
Their method focuses on blood vessels and uses a set of templated solutions to
mesh junctions, with the curve-skeleton used as a proxy to fit the best template
according to the morphology of the vessel. Hexahedra are radially arranged
around the skeleton, thus generating badly shaped elements near the spine.
Moreover, this method works best for bifurcations (which are typical on blood
vessels), while it tends to generate high valence vertices and badly shaped
hexahedra when junctions with higher valence are present. Our method avoids
high valence irregular vertices thus favoring better per-element quality [Livesu
et al., 2015].

In [Liu et al., 2015] a skeleton-based method for T-spline fitting is proposed,
which can also be used for hexahedral meshing. Half-planes are employed to
mesh bi-furcations and tri-furcations. This method suffers the same drawbacks
as [Zhang et al., 2007]: it tends to produce overly complex meshes with high
valence vertices if the skeleton contains high-valence junctions, setting a tight
upper bound to the quality of the elements directly incident at them.

In [Yao et al., 2009] Yao and colleagues propose to drive the meshing process
with a manually sketched curve-skeleton. Junctions are handled with a neat
subdivision process. Similarly to [Usai et al., 2015], this work focuses on the
generation of base domains for quadrilateral meshing and, therefore, it can be
considered an alternative starting point for our method.

Grid-based methods subdivide the volume using either a regular grid or an
octree and, subsequently, they move the vertices of the hexahedra intersecting
the surface onto the surface itself so as to better approximate the original
shape [Lin et al., 2015,Maréchal, 2009,Schneiders, 1996]. Due to their simplicity
and ability to mesh any object, grid-based methods are still dominant in industry.
However, these methods suffer from several drawbacks: they tend to produce
unnecessarily high resolution meshes, they are not invariant to rotation (i.e., the
same volume can be meshed differently, when rotated) and they tend to push
the elements of worst quality near the boundary. Our method is rotationally

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

70 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

PolyCut

Ours

OursPolyCut

Figure D.1: Polycube mappings may force the introduction of unnecessary
singularities, penalizing the alignment with the boundary of the shape (top
closeup); our meshing better aligns to the limbs of the Cactus (bottom closeup).

invariant and generates boundary conforming hexmeshes (Figure D.1) with
much less elements, also promoting high quality hexahedra near the boundary,
an important requirement to ensure accurate simulations [Ruiz-Gironés et al.,
2015].

Advancing front techniques start the mesh generation process on the surface
and then move inwards [Tautges et al., 1996]. This approach tends to place
singularities and lower quality hexahedra inside the volume. A recent example of
expanding front method and a review of similar methods is provided in [Kremer
et al., 2014]. These methods generate high quality meshes near the boundary
regions, which is a desired property for many applications. Unfortunately, they
are prone to generate low quality meshes in the interior (where the fronts merge)
and cannot be applied to all classes of shapes (only genus zero shapes are
supported). Our method can handle complex topologies, like Fertility in
Figure D.10 and the Block model in Figure D.13.

Parameterization based methods map the input volume to some parametric
space, where the connectivity of the mesh is generated. The inverse mapping is
then used to place the corresponding vertices in the original domain. PolyCubes
[Tarini et al., 2004] (i.e., orthogonal polyhedra) have been widely used as
parametric domains because they can be trivially hex-meshed with a regular
grid, generating a structured mesh [Fang et al., 2016,Cherchi et al., 2016,Huang
et al., 2014,Livesu et al., 2013,Gregson et al., 2011]. However, the structure of
the mapping domain often causes the introduction of unnecessary singularities

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 71

Figure D.2: We derive from the curve-skeleton of a triangle mesh (left) a
volumetric decomposition in tubes (white), branching cubes (red) and terminal
cubes (green). Each element in the tubular structure is a hexahedron.

that penalize the alignment with the boundary (Figure D.1). Other popular
parameterization-based techniques associate to each point in the interior of the
shape a 3D frame such that the resulting frame field is aligned to the surface of
the shape. The mesh connectivity is then generated by sampling the field, with
singularities occurring at its vanishing points [Sokolov et al., 2016, Kowalski
et al., 2014,Huang et al., 2011,Nieser et al., 2011]. These algorithms generate
meshes that nicely adapt to the input surface, however, they do not provide any
control on the structure of the mesh and tend to introduce misaligned singular
vertices, resulting in a complex singular structure [Li et al., 2012]. Our method
avoids the singularity misalignment problem, resulting in coarse singularity
layouts that embed the high level structure of the input shapes, a key factor to
ensure high quality hexahedral meshes [Gao et al., 2015b]. Furthermore, there
are no theoretical guarantees that a volume parameterization from a frame
field admits an all-hex structure. Current methods may fail to produce a mesh
depending on the type of singularities in the input field [Li et al., 2012].

D.3 Pipeline overview

We propose a method to generate a full hexahedral mesh out of a tubular shape.
We input a triangle mesh M and its curve-skeleton S, that we use as a proxy
to infer the structural properties of M and drive the meshing process. The
result is a full hexahedral mesh H that embeds in its connectivity the structure
of S and has M as outer boundary. We optionally apply templated schemes to

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

72 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

✔ ✘✔

Figure D.3: We start with a dense sampling of the curve-skeleton (left) and we
re-sample it by iteratively splitting half-way each of its portions. The splitting
process ends when the maximal sphere centered at the new sample intersects
both the spheres centered at the two end-points of the current segment (middle).
The resulting coarse sampling of the skeleton (right) determines the connectivity
of the final hexahedral mesh.

control the meshing density and adapt it to the morphology of the shape, thus
keeping element size variance as low as possible.

Our work builds upon the coarse quad layout generation algorithm described
in [Usai et al., 2015], which we extend adding a volumetric interpretation of
the tubular structure described in their paper. The method presented in [Usai
et al., 2015] generates a quadrilateral mesh of tubular shapes. This mesh is
obtained from a decomposition into tubes - cylinders with quadrilateral section
that surround the skeleton curves - and cubes centered at both the branching
and terminal nodes of the curve-skeleton (Figure D.2). The quads composing
each tube and each cube are derived and assembled so that the resulting mesh
is conforming (i.e., free from T-junctions); models with loops and complex
topologies are supported.

This structure lends itself to straightforward hexahedral meshing, by gridding
each cube and each tube with a number of subdivisions that keep the conformity
in the hex-mesh as well. Note that the resulting hexahedral mesh is structured
by construction, because its connectivity embeds the decomposition in tubes
and cubes encoded in the tubular structure, yet because each tube and each
cube is meshed as a regular grid [Tautges, 2004].

We extend the pipeline presented in [Usai et al., 2015] and adapt it to the
volumetric case. Our hex-meshing strategy consists of the following steps:

1. Skeleton resampling: we propose a fully automatic strategy to sample
the skeleton S, in order to avoid excessively dense meshes and badly
shaped elements (Section D.4);

2. Tubular structure: we initialize mesh H as the tubular structure enclos-

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 73

ing S, placing a hexahedron at each skeleton branching node, extruding
its facets along the skeleton curves and subdividing each element in order
to avoid T-junctions (see [Usai et al., 2015] for details);

3. Resolution control: we identify changes in the local thickness of the
skeleton and use a set of templates to locally adapt the meshing density
to the morphology of the shape (Section D.5.1);

4. Projection: we project the boundary of H onto the input shape M,
using ray casting to generate an initial poor quality map, and then we
refine such map using the abstract domains approach described in [Usai
et al., 2015,Tarini et al., 2011];

5. Finalization: we optimize the interior of H, carefully positioning its
vertices so as to maximize per-element quality (Section D.6).

In the remainder of the paper we discuss technical details regarding the
sampling of S (1), the resolution control (3) and the hexmesh finalization (5).
The initialization of the tubular structure (2) and the projection of its boundary
over M (4) are equivalent to the ones presented in [Usai et al., 2015] and, as
such, they will not be discussed here. We point the reader to the original paper
for technical details regarding their implementation.

D.4 Skeleton resampling

Although simply gridding the tubular structure would produce a hexahedral
mesh (Figure D.2 right), a naive use of this technique may lead to excessively
dense meshes with poorly shaped elements (see the left side of Figure D.4).
Indeed, the density of the mesh in the longitudinal direction is directly related
with the sampling density of the underlying curve-skeleton. Expanding and
subdividing the tubular structure to flood the interior of the input shape would
easily result in a hex-mesh containing many inverted elements and no practical
usefulness. In order to improve the mesh quality and produce well shaped
elements we re-sample the curve-skeleton. For each skeleton point we assume to
have the radius of its maximal sphere available. Some skeletonization algorithms
already provide this information (e.g. [Livesu and Scateni, 2013,Livesu et al.,
2012]); otherwise, the radius at a skeleton point can be easily estimated by
measuring its distance to the input surface.

We start from a dense sampling of the curve-skeleton and, then, we sub-
sample it applying arc-length parameterization to each curve of the skeleton,
mapping its length in the interval [0, 1]. We then split the curve in the parametric
space, adding a new sample point half-way, and iteratively repeat the process
for the resulting sub-intervals. The stop criterion is as follows: we do not
split an interval when the maximal sphere centered at a candidate sample
would intersect both spheres centered at the endpoints of the current segment
(Figure D.3). The resulting sampling adapts to the local thickness of the shape

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

74 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

Figure D.4: The sampling of the curve-skeleton determines the density of the
hexahedral meshing. Arbitrarily sampling the curve-skeleton may lead to poor
meshes with badly shaped elements (left). Our sampling strategy generates
good meshes and promotes isotropy (right).

and induces a meshing with a good isotropy (Figures D.4 and D.10). After
re-sampling the skeleton we generate a tubular structure fully enclosing the
skeleton with the method described in [Usai et al., 2015]. The result is a coarse
structured hexahedral mesh H, ready to be further subdivided and inflated to
adhere to the surface of the target shape (Figure D.2).

D.5 Resolution control

a b

The approach described so far is capable of producing hex-
meshes for any shape in our class of interest (i.e. tubular
shapes); very accurate and high quality models can be ob-
tained via the projection and finalization step described
later (see Figure D.10). However, depending on the mor-
phology of the model, the elements sizes may be uneven,
with the presence of high density areas that unnecessarily
increase the resolution of the model. To give an example let
us consider the cone-like shapes aside: the area covered by
the base of the cone is much larger than the area covered by
its tip, hence, if the cone is meshed with a regular grid the
density of the elements on the tip will be much higher than
the elements at the base (a). In order to avoid this behavior
we introduce a mechanism to adjust the resolution of the
model and better adapt to the morphology of the shape, so

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 75

as to keep the element size even and the resolution lower (b).
We detect the elements of the mesh where a change of resolution is needed

(we call them cones) directly from the tubular structure derived from the curve-
skeleton. As explained in Section D.4, the size of each hexahedron in such struc-
ture is proportional to the local thickness of the shape, therefore the morphology
of the input shape is correctly encoded in this coarse, yet easy to process, hex-
mesh.
We split each cone with a template subdivision
that puts more sub-elements at the base and
less at the tip and we propagate the resulting
subdivisions throughout the whole model so as
to generate a conforming hex-mesh. The effect
of this approach can be seen in the inset above,
where the foot of the Warrior is shown before
(left) and after (right) the application of our
cone-based resolution scaling technique. In the
following subsections we illustrate how to detect cones (Section D.5.1) and how
to propagate the subdivision they introduce (Section D.5.2).

D.5.1 Cone detection

Let us consider the hexahedron h depicted in Figure D.5a. In order to decide
whether h is a cone or not we consider the ratio between the size of facets
belonging to h prev and h next that are opposite to the facets of h; if this ratio
is > 4 we mark h as a cone and we apply the volumetric subdivision schemes
depicted in the right part of Figure D.6, each of which is capable of scaling the
resolution of the mesh by a factor of 4. Note that these subdivision patterns
are just a tiny subset of all the possible ways to scale the resolution; as pointed
out in [Takayama et al., 2014] the problem of enumerating an exhaustive list of
subdivision schemes is wide open.

In our experiments we observed that using too many cones may result in
a very high resolution mesh; we therefore restrict our cone detection strategy
only to the terminal branches of the curve-skeleton and we limit the presence

a)

> 4

b)

Figure D.5: A hexahedron h (a) is a ”cone” if the ratio between the areas of the
opposite facets of its two adjacent hexahedra (here in red and green) is larger
than 4 (b).

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

76 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

Regular split Cone Cone
top bot top bot

Figure D.6: The volumetric splitting schemes we use in our meshing algorithm.
From left to right: a single hexahedron; a regularly split hexahedron; a cone
that scales from 1×1 to 2×2; a cone that scales from 2×2 to 4×4.

of cones at up to two for each skeleton branch. If more than two candidate
cones are found along a skeleton branch we rank them according to the ratio
described above and we select the two top ranked elements. Specifically, we
enable the presence of one 1×1 to 2×2 and one 2×2 to 4×4 cones, thus achieving
a maximum scaling factor of 42 (see Figure D.8). Our choice to restrict to
at most two cones for each terminal branch is justified from the fact that the
class of objects we are interested in (i.e., biological structures like humanoids,
plants and animals) tend to have a thicker core and thinner terminal limbs,
thus requiring a resolution scale only at the peripheries of the shape.

D.5.2 Subdivisions propagation

We propagate the subdivisions induced by the cones throughout the mesh by
solving an Integer Linear Programming (ILP) problem. We associate to each
regular element of the hex-mesh (i.e., not a cone) a variable x that represents
the number of splits necessary to achieve mesh conformity. Regular elements
are always split with the 2×2×2 pattern depicted in Figure D.6, iteratively
applied as many times as indicated by the associated integer variable.

Specifically, for each pair of adjacent elements we require the
number of splits to be equal (inset aside, top), whereas
for each pair of hexahedra adjacent to the same cone C we
require the element at the base to be split once more than
the element at the tip (inset aside, bottom). Furthermore,
since we are solving for the number of splits of each element,
we ask each variable x to be positive. This results in the
following integer linear programming problem

min AX = b
X ≥ 0
X ∈ In

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 77

x4x0 x3x1

x2

x0=1

x2=2

x1=2

x3=1 x4=0

C0 C1 C2

Figure D.7: A 2D example of our subdivision propagation system. We ask
adjacent elements (e.g., x1, x2) to split the same number of times, and elements
at the base of a cone (e.g., x1, x3) to split once more than the elements at
the tip of the same cone (x0, x3, x4). By solving the resulting ILP problem we
know how many times we need to split each element in the mesh to make it
conforming.

with n being the number of regular elements in the mesh (here the cones do not
count), A being a sparse n×n coefficient matrix and b being a sparse vector.
We solve such problem with Gurobi [Gurobi,]. Note that since we admit cones
only in the terminal limbs of a shape no cone will appear in a loop; consequently
such system will always admit a solution regardless the topology of the shape,
as discussed in [Usai et al., 2015]. In Figure D.7 we show a 2D example of our
propagation system; real examples can be seen in Figure D.8, where both Dino
and Dinopet are depicted.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

78 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

Figure D.8: Left: a hexahedral mesh of the Dino model obtained using our
resolution scaling scheme; the volumetric tubular structure used to derive the
meshing process. If a limb contains only one cone (legs, neck) we apply a 2×2
to 4×4 subdivision scheme; if there are two cones along the same limb (tail) we
place one 1×1 to 2×2 and one 2×2 to 4×4 subdivision schemes, thus achieving a
maximum scaling factor of 42. Right: another example of our resolution scaling
technique applied to the Dinopet.

D.6 Projection and Finalization

As already mentioned in Section D.3 the projection phase is the same used
in [Usai et al., 2015]. We briefly recap it here just for completeness. We first
use ray-casting to inflate the boundary of the hexa mesh, so as to map it to the
input triangle-mesh; we then optimize the resulting mapping using the abstract
domains technique introduced in [Tarini et al., 2011]. Please refer to [Usai et al.,
2015,Tarini et al., 2011] for further details.

Once the surface of H has been mapped onto the target surface M, we
optimize the position of internal vertices, by minimizing the following quadratic
energy

n∑
i

∑
j∈N(i)

‖vi − vj‖2

Here N(i) is the volumetric one ring of the vertex vi. Minimizing the energy
above requires the resolution of a sparse linear system Ax = b in the least square
sense, according to the normal equation ATAx = AT b.

The hexahedral meshes so generated have good average quality but can,
and in general do, contain inverted elements, that is, non-convex hexahedra
[Knupp, 1999]. Even a single inverted element makes a mesh unusable for
applications [Pébay et al., 2008], therefore a further optimization step aimed
at removing inverted elements is needed. Since the focus of this work is the
generation of a high quality topology, we rely on standard optimization tools for
the improvement of per element quality. Notice that separating the generation of
the connectivity from the optimization of the embedding is a classical approach
in hex-mesh generation [Livesu et al., 2015].

In order to improve mesh quality we first add a pillowing (or padding) layer,
extruding the surface quads to form a shell of hexahedra surrounding the outer

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 79

Without padding With padding

Figure D.9: Prior to padding boundary elements may have more than one facet
exposed on the surface. If these facets are coplanar the element will become
degenerate, with no chances of optimization as at least six vertices will be
constrained on the surface. We therefore add a padding layer. This ensures that
each element will have at most one facet exposed (four vertices), thus leaving
enough degrees of freedom for the subsequent mesh optimization.

surface of the hexahedral mesh [Gregson et al., 2011]. After pillowing, each
element of the mesh will have at most four vertices on the surface. Consequently,
at least four vertices per element will be free to move in the interior, guaranteeing
enough degrees of freedom for the subsequent quality optimization (Figure D.9).
We then apply the edge-cone rectification algorithm [Livesu et al., 2015] to
remove all the inverted elements from the mesh and improve on both minimum
and average quality (see Table D.1). For the edge-cone rectification algorithm
we always used the same parameters, that is: automatic estimation of the target
edge-length, attraction to the surface weight (α) equal to 20 and attraction to
the sharp features (β) equal to 0.

D.7 Results

We have implemented our algorithm as a single threaded C++ application and
we run our tests on a MacBook Air equipped with a 1.7GHz Intel Core i5 and
4GB of RAM. The running times of our method vary from 1.5 seconds for a
simple shape like Cactus to approximately 1 minute for a complex shape like
Warrior. Alternative meshing strategies such as [Huang et al., 2014,Livesu
et al., 2013] are one order of magnitude slower.

For the computation of the curve-skeletons we used different algorithms,
specifically: Armadillo, Big Buddy, Block, Cactus, Clef, Dinopet, Di-
nosaur, Octopus, Santa, Blood, Vessel and Warrior were skeletonized
using the 3D-from-2D approach described in [Biasotti et al., 2015,Livesu and
Scateni, 2013, Livesu et al., 2012]; Fertility and Rocker Arm were skele-
tonized using the mean curvature approach described in [Tagliasacchi et al.,

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

80 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

Figure D.10: A gallery of hexahedral meshes generated with our method without
resolution scaling; the tubular structures used to derive the hexahedral meshes
are shown in white. From top left to bottom right: BigBuddy, Octopus,
Santa, BloodVessel, Armadillo and Fertility.

2012]. In the latter case, we manually simplified the skeleton, merging nearby
branching nodes to better reflect the logical structure of the shape (we used
Skeleton Lab [Barbieri et al., 2016] for each such editing). This operation was
not necessary for the skeletons computed with [Biasotti et al., 2015, Livesu
and Scateni, 2013,Livesu et al., 2012] as they already embed heuristics for the
automatic collapse of spurious branches.

We tested our method on a wide range of objects (Figures D.10, D.1, D.8, D.12);
next to each model we show the tubular structure we used to drive the meshing
process. The meshes produced by our method embed a volume decomposition
that reflects the logical structure of the input shape and naturally align with its
main features. As acknowledged in [Blacker, 2001] a good alignment with the
features of a shape leads to superior results in the simulations. Furthermore,
recent studies have shown that simplifying the singularity graph of a hexahedral
mesh by aligning its singular vertices helps to keep the resolution lower and
at the same time improves the mesh quality [Gao et al., 2015b]. Our method
builds upon the quad layout generation algorithm proposed in [Usai et al., 2015]
so it naturally aligns singular vertices in a meaningful way, providing as-coarse-
as-possible singularity layouts that turn into high quality, boundary conforming,
hexahedral meshes (see yellow lines in the top closeup in Figure D.10).

We summarize our results in Table D.1, where we also compare against
the skeleton-based method proposed in [Lin et al., 2012], two PolyCube-based
methods [Huang et al., 2014,Livesu et al., 2013], one frame field-based method [Li
et al., 2012], an Octree-based method [Maréchal, 2009] and the recently published
Generalized Sweeping [Gao et al., 2016] and CVIF [Lin et al., 2015] methods.
For each model we report: the mesh resolution (for both input and output),
and the minimum and average quality of the output hex-mesh and the average

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 81

Figure D.11: The head of the Warrior meshed with PolyCut (left), our method
without applying the resolution scaling step (center) and applying it (right).

distance from the input surface. We evaluate quality using the Scaled Jacobian
(SJ), a popular metric that measures the deviation of each element from a
perfect cube [Pébay et al., 2008]; the SJ is defined within the range [−1, 1] with
one being optimal and negative values denoting inverted elements. None of the
models shown throughout the paper contains inverted elements (i.e., min SJ >
0), this is a fundamental minimum requirement for many applications involving
hexahedral meshes [Blacker, 2001].

Since we use [Livesu et al., 2015] in the final step of our method (Section D.6),
for the sake of a fair comparison we optimized the meshes of our competitors
with the same technique, whenever possible. Exceptions to this rule are: the
Generalized Sweeping [Gao et al., 2015b] and Frame Field [Li et al., 2012]
approaches, for which we report the quality from the orginal papers as with
[Livesu et al., 2015] it was impossible to improve any further; and CVIF [Lin
et al., 2015] and the skeleton-based approaches [Lin et al., 2012], for which
we did not have the geometry available. Notice that both [Lin et al., 2015]
and [Lin et al., 2012] already employ some optimization strategy to finalize
their meshes, therefore we believe that the values reported in Table D.1 truly
reflect the potential of the connectivity generated by their meshing strategies.

From the qualitative point of view the performance of our algorithm matches
the parameterization-based methods [Huang et al., 2014,Livesu et al., 2013,Li
et al., 2012] and outperforms Generalized Sweeping [Gao et al., 2015b], grid-

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

82 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

PolyCut

Ours
PolyCut Ours

Figure D.12: Mapping to an axis aligned domain strongly limits the ability to
represent off axis features; most of the spikes of the Warrior are not caught
by the polycube, resulting in a poor meshing that hardly matches the original
geometry (left). Our tubular structure nicely follows each and every spike,
generating a better meshing (right).

based [Lin et al., 2015, Maréchal, 2009] and skeleton-based [Lin et al., 2012]
algorithms. Our method achieved average SJ above 0.9 for the majority of the
models we produced, outperforming previous skeleton-based methods like [Lin
et al., 2012], whose hexahedral meshes hardly exceed 0.8 average SJ.

Another important feature that emerged from our tests is the ability to
keep the resolution low, an important criterion for fast simulations. As can be
noticed in Table D.1 we produced the coarsest hex-meshes in the majority of
the comparisons. From this point of view the worst performances come from
the Octree [Maréchal, 2009] and voxel-based CVIF [Lin et al., 2015] methods.

We also propose some visual comparison against a polycube-based method
(i.e., PolyCut [Livesu et al., 2013]). As one can notice, in Figure D.1, polycube-
based methods may not align with the surface of the model, placing unnecessary
singularities that prevent the edges to align with the limbs of the Cactus. This
property, called surface conformity, serves to promote the placement of high
quality elements close to the boundary of the model and it is an important
factor to ensure accurate simulations [Ruiz-Girones, 2011]. The connectivity
generated by our method nicely aligns with both the limbs and the core of the
shape enabling the placement of high quality elements nearby the boundary
of the shape. Our method is also able to generate a connectivity that nicely
fits the assembly of spikes in the knees, elbows and shoulders of the Warrior
(Figure D.12). We note that, because of the rigid structure of the parametric
domain, such a meshing is impossible to achieve with a polycube-based method.
As it can be noticed in the closeup in Figure D.12, some of the spikes are not
caught by the polycube, resulting in a hexahedral mesh that hardly fits the
target geometry.

In Figure D.11 we make a sample visual comparison also with our method
once the resolution scaling is applied. As one can see from the picture on the
right, our complete method obtains a reasonable compromise between element

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 83

Figure D.13: Some preliminary test on three mechanical parts: RockerArm
(top left), Block (right) and Clef (bottom). Although out of the scope of this
work our method could produce full hexahedral meshes for each model, but it
still fails at aligning the meshing to sharp features; something that we plan to
work on in the future.

regularity (for which PolyCut is optimal) and alignment with the features (for
gaining the optimum on this we should not apply the reduction scheme).

Finally, although out of the scope of our method, we run some preliminary
tests on mechanical parts. As one can notice in Figure D.13, we have been
able to produce full hexahedral meshes for our test models, but we still fail at
aligning the edge flow with the sharp edges and features of the shapes. In the
future, we plan to improve our meshing strategy by taking into account the
alignment to sharp features, so as to be able to embrace a broader range of
shapes.

D.8 Conclusions

We have introduced a skeleton-based algorithm for the automatic generation of
structured hexahedral meshes of tubular shapes, and we have also presented
novel techniques for the control of the resolution of the hexahedral mesh, both
across and along the skeleton curves. To reach this goal we exploit the properties
of the curve-skeleton, using it as a proxy to derive structural information about
3D shapes, as in [Usai et al., 2015]. We then use such information to construct
volumetric meshes that nicely align with the branching structure of the target

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

84 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

Model #Tris #Hexa avg/min SJ Avg dist

Armadillo

PolyCut† 30K .90/.14
Ours 331K 4K .88/.21 3.7× 10−5

Big Buddy
Ours 27K 15K .90/.32 4.5× 10−5

Block

PolyCut† 3K .87/.25

Octree-based† 20K .91/.27
Ours 5K 4K .81/.36 8.7× 10−6

Cactus

PolyCut† 8K .94/.42
Ours 11K 4K .92/.52 2.1× 10−6

Clef

Octree-based† 10K .90/.34
Ours 3K 2K .86/.29 2.9× 10−5

Dinopet
Ours 9K 18K .92/.18 5.3× 10−5

Dinosaur
Ours 47K 9K .91/.41 4.7× 10−5

Fertility

`1 PolyCubes† 18K .94/.42

PolyCut† 54K .86/.34

Skel-based§ 16K .75/.08

CVIF§ 107K .90/.04

Frame-field‡ 14K .91/.35

Gen.Sweep‡ 20K .82/.18
Ours 33K 8K .90/.50 2.6× 10−5

Octopus
Ours 66K 5K .88/.11 4.4× 10−4

RockerArm

`1 PolyCubes† 24K .96/.59

PolyCut† 57K .96/.58

Frame-field † 11K .94/.57

Gen.Sweep‡ 11K .83/.11

CVIF§ 63K .90/.06
Ours 20K 19K .91/.16 6.2× 10−5

Santa

Skel-based§ 15K .72/.08

CVIF§ 73K .88/.04
Ours 13K 26K .94/.37 2.2× 10−4

Blood Vessel
Ours 60K 5K .88/.32 9.0× 10−4

Warrior

PolyCut† 24K .94/.14
Ours 27K 19K .90/.29 8.7× 10−5

† optimized with [Livesu et al., 2015]
‡ data from the original paper, we could not improve on quality any further using [Livesu et al.,
2015]
§ data from the original paper, models not available

Table D.1: Summary of our results. From left to right: number of input triangles,
number of output hexahedra, average and minimjm Scaled Jacobian (compute
using the Verdict Library [Stimpson et al., 2007]), average deviation from
the input surface (measure using Metro [Cignoni et al., 1998]). We compare
against: `1 PolyCubes [Huang et al., 2014], PolyCut [Livesu et al., 2013],
Frame-field based [Li et al., 2012], Skeleton-based [Lin et al., 2012], Generalized
Sweeping [Gao et al., 2015b], CVIF [Lin et al., 2015] and Octree-based [Maréchal,
2009] all-hexahedral meshing techniques. For each model, we highlight in bold
both the lowest resolution and the highest min/avg quality.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes 85

shape. The method is easy to code. It does not require any user parameter and it
generates quality meshes for any 3D model that admits a skeletal representation.

D.8.1 Limitations and further works

This method is inherently limited in its scope by the class of shapes that admit
a skeletal representation. Although this is not a real limitation for biological
shapes like humanoids, animals, vessels and plants, we would like to be more
general and embrace a wider class of shapes. We are therefore looking for other
shape descriptors or shape understanding processes that can be exploited to
derive structural information about general 3D shapes, to be used to accomplish
tasks like surface and volume remeshing.

Similarly to polycubes, the hexahedral meshes generated by our method
have a simple block structure that does not conform to a frame field [Fang
et al., 2016,Li et al., 2012]. As a consequence, the twisting component along
the skeleton curves can hardly be controlled, possibly leading to poor meshing
results.

The method also inherits the limitations of [Usai et al., 2015] regarding the
alignment to sharp features. As it is mainly intended for biologically-inspired
shapes, at the moment the preservation of sharp features is not addressed.

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

86 Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

BIBLIOGRAPHY 87

Bibliography

[Alemanno et al., 2014] Alemanno, G., Cignoni, P., Pietroni, N., Ponchio, F.,
and Scopigno, R. (2014). Interlocking pieces for printing tangible cultural
heritage replicas. In GCH, pages 145–154. 7, 8

[Alliez et al., 2005] Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M.
(2005). Variational tetrahedral meshing. In ACM Transactions on Graphics
(TOG), volume 24, pages 617–625. ACM. 67

[Attene, 2015] Attene, M. (2015). Shapes in a box: Disassembling 3d objects for
efficient packing and fabrication. In Computer Graphics Forum, volume 34,
pages 64–76. Wiley Online Library. 9

[Attene et al., 2008] Attene, M., Mortara, M., Spagnuolo, M., and Falcidieno,
B. (2008). Hierarchical convex approximation of 3d shapes for fast region
selection. In Computer graphics forum, volume 27, pages 1323–1332. Wiley
Online Library. 8

[Barbieri et al., 2016] Barbieri, S., Meloni, P., Usai, F., Spano, L. D., and
Scateni, R. (2016). An interactive editor for curve-skeletons: Skeletonlab.
Computers & Graphics, 60:23–33. 80

[Biasotti et al., 2015] Biasotti, S., Tarini, M., and Giachetti, A. (2015). Practi-
cal medial axis filtering for occlusion-aware contours. 79, 80

[Blacker, 2001] Blacker, T. (2001). Automated conformal hexahedral mesh-
ing constraints, challenges and opportunities. Engineering with Computers,
17(3):201–210. 67, 68, 80, 81

[Chazelle, 1984] Chazelle, B. (1984). Convex partitions of polyhedra: a lower
bound and worst-case optimal algorithm. SIAM Journal on Computing,
13(3):488–507. 8

[Chen et al., 2013] Chen, D., Sitthi-amorn, P., Lan, J. T., and Matusik, W.
(2013). Computing and fabricating multiplanar models. In Computer graphics
forum, volume 32, pages 305–315. Wiley Online Library. 6, 12

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

88 BIBLIOGRAPHY

[Chen and Sass, 2016] Chen, L. and Sass, L. (2016). Fresh press modeler: A
generative system for physically based low fidelity prototyping. Computers &
Graphics, 54:157–165. 6, 12

[Cherchi et al., 2016] Cherchi, G., Livesu, M., and Scateni, R. (2016). Polycube
simplification for coarse layouts of surfaces and volumes. In Computer
Graphics Forum, volume 35, pages 11–20. Wiley Online Library. 70

[Cignoni et al., 2014] Cignoni, P., Pietroni, N., Malomo, L., and Scopigno, R.
(2014). Field-aligned mesh joinery. ACM Transactions on Graphics (TOG),
33(1):11. 5, 9

[Cignoni et al., 1998] Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro:
Measuring error on simplified surfaces. In Computer Graphics Forum, vol-
ume 17, pages 167–174. Wiley Online Library. 43, 84

[Cohen-Steiner et al., 2004] Cohen-Steiner, D., Alliez, P., and Desbrun, M.
(2004). Variational shape approximation. In ACM Transactions on Graphics
(TOG), volume 23, pages 905–914. ACM. 5

[Cook, 1984] Cook, R. L. (1984). Shade trees. ACM Siggraph Computer
Graphics, 18(3):223–231. 7

[Cormen, 2009] Cormen, T. H. (2009). Introduction to algorithms. MIT press.
36

[Cornea et al., 2007] Cornea, N. D., Silver, D., and Min, P. (2007). Curve-
skeleton properties, applications, and algorithms. IEEE transactions on
visualization and computer graphics, 13(3):0530–548. 68

[Deuss et al., 2014] Deuss, M., Panozzo, D., Whiting, E., Liu, Y., Block, P.,
Sorkine-Hornung, O., and Pauly, M. (2014). Assembling self-supporting
structures. ACM Transactions on Graphics (TOG), 33(6):214. 9

[Dinh et al., 2015] Dinh, H. Q., Gelman, F., Lefebvre, S., and Claux, F. (2015).
Modeling and toolpath generation for consumer-level 3d printing. In ACM
SIGGRAPH 2015 Courses, page 17. ACM. 5

[Doggett and Hirche, 2000] Doggett, M. and Hirche, J. (2000). Adaptive view
dependent tessellation of displacement maps. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 59–66.
ACM. 7

[Fang et al., 2016] Fang, X., Xu, W., Bao, H., and Huang, J. (2016). All-hex
meshing using closed-form induced polycube. ACM Transactions on Graphics
(TOG), 35(4):124. 70, 85

[Fekete and Mitchell, 2001] Fekete, S. P. and Mitchell, J. S. (2001). Terrain
decomposition and layered manufacturing. International Journal of Compu-
tational Geometry & Applications, 11(06):647–668. 8, 27

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

BIBLIOGRAPHY 89

[Gao et al., 2015a] Gao, W., Zhang, Y., Nazzetta, D. C., Ramani, K., and
Cipra, R. J. (2015a). Revomaker: Enabling multi-directional and functionally-
embedded 3d printing using a rotational cuboidal platform. In Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology,
pages 437–446. ACM. 9, 32

[Gao et al., 2015b] Gao, X., Deng, Z., and Chen, G. (2015b). Hexahedral
mesh re-parameterization from aligned base-complex. ACM Transactions on
Graphics (TOG), 34(4):142. 68, 71, 80, 81, 84

[Gao et al., 2016] Gao, X., Martin, T., Deng, S., Cohen, E., Deng, Z., and
Chen, G. (2016). Structured volume decomposition via generalized sweeping.
IEEE transactions on visualization and computer graphics, 22(7):1899–1911.
80

[Gregson et al., 2011] Gregson, J., Sheffer, A., and Zhang, E. (2011). All-hex
mesh generation via volumetric polycube deformation. In Computer graphics
forum, volume 30, pages 1407–1416. Wiley Online Library. 70, 79

[Guennebaud et al., 2010] Guennebaud, G., Jacob, B., et al. (2010). Eigen v3.
http://eigen.tuxfamily.org. 46

[Gurobi,] Gurobi. Optimizer 6.5. http://www.gurobi.com/. 46, 77

[Hao et al., 2011] Hao, J., Fang, L., and Williams, R. E. (2011). An efficient
curvature-based partitioning of large-scale stl models. Rapid Prototyping
Journal, 17(2):116–127. 7

[Herholz et al., 2015] Herholz, P., Matusik, W., and Alexa, M. (2015). Approxi-
mating free-form geometry with height fields for manufacturing. In Computer
Graphics Forum, volume 34, pages 239–251. Wiley Online Library. 7, 9

[Hildebrand et al., 2012] Hildebrand, K., Bickel, B., and Alexa, M. (2012).
crdbrd: Shape fabrication by sliding planar slices. In Computer Graphics
Forum, volume 31, pages 583–592. Wiley Online Library. 9

[Hildebrand et al., 2013] Hildebrand, K., Bickel, B., and Alexa, M. (2013). Or-
thogonal slicing for additive manufacturing. Computers & Graphics, 37(6):669–
675. 7

[Hu et al., 2014] Hu, R., Li, H., Zhang, H., and Cohen-Or, D. (2014). Approxi-
mate pyramidal shape decomposition. ACM Trans. Graph., 33(6):213–1. i, 8,
27, 28, 45, 49

[Huang et al., 2014] Huang, J., Jiang, T., Shi, Z., Tong, Y., Bao, H., and
Desbrun, M. (2014). l-based construction of polycube maps from complex
shapes. ACM Transactions on Graphics (TOG), 33(3):25. 70, 79, 80, 81, 84

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

http://www.gurobi.com/

90 BIBLIOGRAPHY

[Huang et al., 2011] Huang, J., Tong, Y., Wei, H., and Bao, H. (2011). Bound-
ary aligned smooth 3d cross-frame field. In ACM transactions on graphics
(TOG), volume 30, page 143. ACM. 71

[Jacobson et al.,] Jacobson, A., Panozzo, D., et al. libigl: A simple c++
geometry processing library, 2016. 46

[Johnson, 1975] Johnson, D. B. (1975). Finding all the elementary circuits of a
directed graph. SIAM Journal on Computing, 4(1):77–84. 40

[Jun et al., 2003] Jun, C.-S., Cha, K., and Lee, Y.-S. (2003). Optimizing
tool orientations for 5-axis machining by configuration-space search method.
Computer-Aided Design, 35(6):549–566. 2

[Kahn, 1962] Kahn, A. B. (1962). Topological sorting of large networks. Com-
munications of the ACM, 5(11):558–562. 40

[Knupp, 1999] Knupp, P. M. (1999). Achieving finite element mesh quality via
optimization of the jacobian matrix norm and associated quantities, part 1-a
framework for surface mesh optimization. Technical report, Sandia National
Laboratories, Albuquerque, NM, and Livermore, CA. 78

[Kowalski et al., 2014] Kowalski, N., Ledoux, F., and Frey, P. (2014). Block-
structured hexahedral meshes for cad models using 3d frame fields. Procedia
Engineering, 82:59–71. 71

[Kraevoy et al., 2007] Kraevoy, V., Julius, D., and Sheffer, A. (2007). Shuffler:
Modeling with interchangeable parts. The Visual Computer. 8

[Kremer et al., 2014] Kremer, M., Bommes, D., Lim, I., and Kobbelt, L. (2014).
Advanced automatic hexahedral mesh generation from surface quad meshes.
In Proceedings of the 22nd International Meshing Roundtable, pages 147–164.
Springer. 67, 70

[Li et al., 2012] Li, Y., Liu, Y., Xu, W., Wang, W., and Guo, B. (2012). All-hex
meshing using singularity-restricted field. ACM Transactions on Graphics
(TOG), 31(6):177. 71, 80, 81, 84, 85

[Lien and Amato, 2007] Lien, J.-M. and Amato, N. M. (2007). Approximate
convex decomposition of polyhedra. In Proceedings of the 2007 ACM sympo-
sium on Solid and physical modeling, pages 121–131. ACM. 8

[Lin et al., 2015] Lin, H., Jin, S., Liao, H., and Jian, Q. (2015). Quality
guaranteed all-hex mesh generation by a constrained volume iterative fitting
algorithm. Computer-Aided Design, 67:107–117. 69, 80, 81, 82, 84

[Lin et al., 2012] Lin, H., Liao, H., and Deng, C. (2012). Filling triangular
mesh model with all-hex mesh by volume subdivision fitting. State Key Lab
of CAD & CG, Zhejiang University Report No: TR ZJUCAD, 2:2012. 69, 80,
81, 82, 84

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

BIBLIOGRAPHY 91

[Liu et al., 2014] Liu, L., Shamir, A., Wang, C. C., and Whiting, E. (2014). 3d
printing oriented design: geometry and optimization. In SIGGRAPH ASIA
Courses, pages 1–1. 5

[Liu et al., 2015] Liu, L., Zhang, Y., Liu, Y., and Wang, W. (2015). Feature-
preserving t-mesh construction using skeleton-based polycubes. Computer-
Aided Design, 58:162–172. 69

[Livesu et al., 2017] Livesu, M., Ellero, S., Mart́ınez, J., Lefebvre, S., and
Attene, M. (2017). From 3d models to 3d prints: an overview of the processing
pipeline. In Computer Graphics Forum, volume 36, pages 537–564. Wiley
Online Library. 5

[Livesu et al., 2012] Livesu, M., Guggeri, F., and Scateni, R. (2012). Recon-
structing the curve-skeletons of 3d shapes using the visual hull. IEEE
transactions on visualization and computer graphics, 18(11):1891–1901. 73,
79, 80

[Livesu and Scateni, 2013] Livesu, M. and Scateni, R. (2013). Extracting curve-
skeletons from digital shapes using occluding contours. The Visual Computer,
29(9):907–916. 73, 79, 80

[Livesu et al., 2015] Livesu, M., Sheffer, A., Vining, N., and Tarini, M. (2015).
Practical hex-mesh optimization via edge-cone rectification. ACM Transac-
tions on Graphics (TOG), 34(4):141. 69, 78, 79, 81, 84

[Livesu et al., 2013] Livesu, M., Vining, N., Sheffer, A., Gregson, J., and
Scateni, R. (2013). Polycut: monotone graph-cuts for polycube base-complex
construction. ACM Transactions on Graphics (TOG), 32(6):171. 6, 70, 79,
80, 81, 82, 84

[Lo et al., 2009] Lo, K.-Y., Fu, C.-W., and Li, H. (2009). 3d polyomino puzzle.
In ACM Transactions on Graphics (TOG), volume 28, page 157. ACM. 9

[Lorensen and Cline, 1987] Lorensen, W. E. and Cline, H. E. (1987). Marching
cubes: A high resolution 3d surface construction algorithm. In ACM siggraph
computer graphics, volume 21, pages 163–169. ACM. 13

[Luo et al., 2012] Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. (2012).
Chopper: partitioning models into 3d-printable parts. 7

[Maréchal, 2009] Maréchal, L. (2009). Advances in octree-based all-hexahedral
mesh generation: handling sharp features. Proceedings of the 18th Interna-
tional Meshing Roundtable, pages 65–84. 69, 80, 82, 84

[Medellin et al., 2007] Medellin, H., Lim, T., Corney, J., Ritchie, J., and Davies,
J. (2007). Automatic subdivision and refinement of large components for
rapid prototyping production. Journal of Computing and Information Science
in Engineering, 7(3):249–258. 7

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

92 BIBLIOGRAPHY

[Mitani and Suzuki, 2004] Mitani, J. and Suzuki, H. (2004). Making paper-
craft toys from meshes using strip-based approximate unfolding. In ACM
transactions on graphics (TOG), volume 23, pages 259–263. ACM. 6

[Muntoni and Scateni, 2014] Muntoni, A. and Scateni, R. (2014). Simplifying
the shape of triangle meshes for unfolding, milling and fabrication. 13, 14

[Nealen et al., 2006] Nealen, A., Müller, M., Keiser, R., Boxerman, E., and
Carlson, M. (2006). Physically based deformable models in computer graphics.
In Computer graphics forum, volume 25, pages 809–836. Wiley Online Library.
67

[Newman et al., 2015] Newman, S. T., Zhu, Z., Dhokia, V., and Shokrani,
A. (2015). Process planning for additive and subtractive manufacturing
technologies. CIRP Annals-Manufacturing Technology, 64(1):467–470. 1

[Nieser et al., 2011] Nieser, M., Reitebuch, U., and Polthier, K. (2011).
Cubecover–parameterization of 3d volumes. In Computer graphics forum,
volume 30, pages 1397–1406. Wiley Online Library. 71

[Nuvoli and Scateni, 2017] Nuvoli, S. and Scateni, R. (2017). Unfolding polygon
meshes for the fabrication of simplified shapes. 22

[Pébay et al., 2008] Pébay, P. P., Thompson, D., Shepherd, J., Knupp, P., Lisle,
C., Magnotta, V. A., and Grosland, N. M. (2008). New applications of the
verdict library for standardized mesh verification pre, post, and end-to-end
processing. In Proceedings of the 16th International Meshing Roundtable,
pages 535–552. Springer. 78, 81

[Richter and Alexa, 2015] Richter, R. and Alexa, M. (2015). Beam meshes.
Computers & Graphics, 53:28–36. 5, 12

[Ruiz-Girones, 2011] Ruiz-Girones, E. (2011). Automatic hexahedral meshing
algorithms: from structured to unstructured meshes. 68, 82

[Ruiz-Gironés et al., 2015] Ruiz-Gironés, E., Roca, X., Sarrate, J., Montenegro,
R., and Escobar, J. M. (2015). Simultaneous untangling and smoothing of
quadrilateral and hexahedral meshes using an object-oriented framework.
Advances in Engineering Software, 80:12–24. 70

[Scalas and Scateni, 2016] Scalas, A. and Scateni, R. (2016). Interactive editing
of unfoldable reduced representations of 3d shapes. 20

[Schneiders, 1996] Schneiders, R. (1996). A grid-based algorithm for the gener-
ation of hexahedral element meshes. Engineering with computers, 12(3-4):168–
177. 69

[Schüller et al., 2013] Schüller, C., Kavan, L., Panozzo, D., and Sorkine-
Hornung, O. (2013). Locally injective mappings. In Computer Graphics
Forum, volume 32, pages 125–135. Wiley Online Library. 64

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

BIBLIOGRAPHY 93

[Schwartzburg and Pauly, 2013] Schwartzburg, Y. and Pauly, M. (2013).
Fabrication-aware design with intersecting planar pieces. In Computer Graph-
ics Forum, volume 32, pages 317–326. Wiley Online Library. 5, 9

[Shamir, 2008] Shamir, A. (2008). A survey on mesh segmentation techniques.
In Computer graphics forum, volume 27, pages 1539–1556. Wiley Online
Library. 6

[Skouras et al., 2015] Skouras, M., Coros, S., Grinspun, E., and Thomaszewski,
B. (2015). Interactive surface design with interlocking elements. ACM
Transactions on Graphics (TOG), 34(6):224. 9

[Sokolov et al., 2016] Sokolov, D., Ray, N., Untereiner, L., and Lévy, B. (2016).
Hexahedral-dominant meshing. ACM Transactions on Graphics (TOG),
35(5):157. 71

[Song et al., 2016] Song, P., Deng, B., Wang, Z., Dong, Z., Li, W., Fu, C.-W.,
and Liu, L. (2016). Cofifab: coarse-to-fine fabrication of large 3d objects.
ACM Transactions on Graphics (TOG), 35(4):45. 7, 12

[Song et al., 2012] Song, P., Fu, C.-W., and Cohen-Or, D. (2012). Recursive
interlocking puzzles. ACM Transactions on Graphics (TOG), 31(6):128. 9

[Song et al., 2015] Song, P., Fu, Z., Liu, L., and Fu, C.-W. (2015). Printing 3d
objects with interlocking parts. Computer Aided Geometric Design, 35:137–
148. 7

[Sorkine, 2006] Sorkine, O. (2006). Differential representations for mesh pro-
cessing. In Computer Graphics Forum, volume 25, pages 789–807. Wiley
Online Library. 43

[Stimpson et al., 2007] Stimpson, C., Ernst, C., Knupp, P., Pébay, P., and
Thompson, D. (2007). The verdict library reference manual. Sandia National
Laboratories Technical Report, 9. 84

[Tagliasacchi et al., 2012] Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang,
H. (2012). Mean curvature skeletons. In Computer Graphics Forum, volume 31,
pages 1735–1744. Wiley Online Library. 79

[Tagliasacchi et al., 2016] Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta,
N., and Telea, A. (2016). 3d skeletons: A state-of-the-art report. In Computer
Graphics Forum, volume 35, pages 573–597. Wiley Online Library. 68

[Takayama et al., 2014] Takayama, K., Panozzo, D., and Sorkine-Hornung, O.
(2014). Pattern-based quadrangulation for n-sided patches. In Computer
Graphics Forum, volume 33, pages 177–184. Wiley Online Library. 75

[Tarini et al., 2004] Tarini, M., Hormann, K., Cignoni, P., and Montani, C.
(2004). Polycube-maps. In ACM transactions on graphics (TOG), volume 23,
pages 853–860. ACM. 6, 70

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

94 BIBLIOGRAPHY

[Tarini et al., 2011] Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and
Cignoni, P. (2011). Simple quad domains for field aligned mesh parametriza-
tion. ACM Transactions on Graphics (TOG), 30(6):142. 73, 78

[Taubin, 1995] Taubin, G. (1995). Curve and surface smoothing without shrink-
age. In Computer Vision, 1995. Proceedings., Fifth International Conference
on, pages 852–857. IEEE. 43

[Tautges, 2001] Tautges, T. J. (2001). The generation of hexahedral meshes for
assembly geometry: survey and progress. International Journal for Numerical
Methods in Engineering, 50(12):2617–2642. 68

[Tautges, 2004] Tautges, T. J. (2004). Moab-sd: integrated structured and
unstructured mesh representation. Engineering with Computers, 20(3):286–
293. 68, 72

[Tautges et al., 1996] Tautges, T. J., Blacker, T., and Mitchell, S. A. (1996).
The whisker weaving algorithm: A connectivity-based method for constructing
all-hexahedral finite element meshes. International Journal for Numerical
Methods in Engineering, 39(19):3327–3349. 70

[Tor and Middleditch, 1984] Tor, S. B. and Middleditch, A. E. (1984). Convex
decomposition of simple polygons. ACM Transactions on Graphics (TOG),
3(4):244–265. 8

[Umetani et al., 2015] Umetani, N., Bickel, B., and Matusik, W. (2015). Com-
putational tools for 3d printing. In SIGGRAPH Courses, pages 9–1. 5

[Usai et al., 2015] Usai, F., Livesu, M., Puppo, E., Tarini, M., and Scateni, R.
(2015). Extraction of the quad layout of a triangle mesh guided by its curve
skeleton. ACM Transactions on Graphics (TOG), 35(1):6. 68, 69, 72, 73, 74,
77, 78, 80, 83, 85

[Vanek et al., 2014] Vanek, J., Galicia, J., Benes, B., Měch, R., Carr, N., Stava,
O., and Miller, G. (2014). Packmerger: A 3d print volume optimizer. In
Computer Graphics Forum, volume 33, pages 322–332. Wiley Online Library.
7

[Wang et al., 2016] Wang, W. M., Zanni, C., and Kobbelt, L. (2016). Im-
proved surface quality in 3d printing by optimizing the printing direction. In
Computer Graphics Forum, volume 35, pages 59–70. Wiley Online Library. 7

[Wu et al., 2016] Wu, R., Peng, H., Guimbretière, F., and Marschner, S. (2016).
Printing arbitrary meshes with a 5dof wireframe printer. ACM Transactions
on Graphics (TOG), 35(4):101. 9

[Xin et al., 2011] Xin, S., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and
Cohen-Or, D. (2011). Making burr puzzles from 3d models. In ACM
Transactions on Graphics (TOG), volume 30, page 97. ACM. 9

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

BIBLIOGRAPHY 95

[Yao et al., 2009] Yao, C.-Y., Chu, H.-K., Ju, T., and Lee, T.-Y. (2009). Com-
patible quadrangulation by sketching. Computer Animation and Virtual
Worlds, 20(2-3):101–109. 69

[Yao et al., 2015] Yao, M., Chen, Z., Luo, L., Wang, R., and Wang, H. (2015).
Level-set-based partitioning and packing optimization of a printable model.
ACM Transactions on Graphics (TOG), 34(6):214. 7

[Zhang and Chen, 2001] Zhang, C. and Chen, T. (2001). Efficient feature
extraction for 2d/3d objects in mesh representation. In Image Processing,
2001. Proceedings. 2001 International Conference on, volume 3, pages 935–938.
IEEE. 41

[Zhang et al., 2015] Zhang, X., Le, X., Panotopoulou, A., Whiting, E., and
Wang, C. C. (2015). Perceptual models of preference in 3d printing direction.
ACM Transactions on Graphics (TOG), 34(6):215. 45

[Zhang et al., 2007] Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C. L., and
Hughes, T. J. (2007). Patient-specific vascular nurbs modeling for isogeo-
metric analysis of blood flow. Computer methods in applied mechanics and
engineering, 196(29):2943–2959. 69

[Zhang et al., 2016] Zhang, Y., Gao, W., Paredes, L., and Ramani, K. (2016).
Cardboardizer: creatively customize, articulate and fold 3d mesh models. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, pages 897–907. ACM. 9

[Zhou et al., 2016] Zhou, Q., Grinspun, E., Zorin, D., and Jacobson, A. (2016).
Mesh arrangements for solid geometry. ACM Transactions on Graphics
(TOG), 35(4):39. 46

[Zhou et al., 2013] Zhou, Q., Panetta, J., and Zorin, D. (2013). Worst-case
structural analysis. ACM Trans. Graph., 32(4):137–1. 41

[Zimmer et al., 2014] Zimmer, H., Lafarge, F., Alliez, P., and Kobbelt, L. (2014).
Zometool shape approximation. Graphical Models, 76(5):390–401. 6

Alessandro Muntoni Geometry Processing for Subtractive Fabrication

	Introduction
	Background
	Simplification to Unfoldable Models
	Heightfields Decomposition

	Simplification to Unfoldable Models
	Overview
	Marching Cubes
	Method
	Automatic Simplification
	User-Driven Simplification
	Unfolding

	Conclusions and Future Works

	Heightfields Decomposition
	Overview
	Problem Setting
	Method
	Initialization
	Partition into Overlapping Height-Field Blocks
	Overlap Resolution
	Improving Blocks Size and Shape
	Faithfulness vs Complexity

	Results
	Milled Results.
	Internal Framework.
	Height Control.
	High-Frequency Models.
	Comparison with hu2014approximate.
	3D Printing.
	Implementation Details.

	Limitations and Concluding Remarks

	Simplification Masks
	Masks with more than one set of Points of Interest
	Masks with only one set of Points of Interest

	Box-Integration of a Tricubic Scalar Field.
	Valid Height-Block Decomposition via AA Box Splitting.
	Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes
	Introduction
	Related work
	Pipeline overview
	Skeleton resampling
	Resolution control
	Cone detection
	Subdivisions propagation

	Projection and Finalization
	Results
	Conclusions
	Limitations and further works

	Bibliography

