
Computers & Graphics (2019)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Mill and Fold: Shape Simplification for Fabrication

Alessandro Muntonia,∗, Stefano Nuvolib, Andreas Scalasc,d, Alessandro Tolab, Luigi Malomoa, Riccardo Scatenib

aVisual Computing Laboratory, ISTI-CNR, Pisa, Italy
bDepartment of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy
cIMATI-CNR, Genova, Italy
dDepartment of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova, Italy

A R T I C L E I N F O

Article history:
Accepted March 17, 2019

Keywords: 3D Meshes, Geometry Pro-
cessing, Mesh Simplification, Milling,
Fabrication

A B S T R A C T

We introduce a pipeline for simplifying digital 3D shapes and fabricate them using 2D
polygonal flat parts. Our method generates shapes that, once unfolded, can be fabricated
with CNC milling machines using special tools called V-Grooves. These tools create
V-shaped furrows at given angles depending on the shape of the used tool. Milling the
edges of each flat facet simplifies the manual assembly, which consists only in folding
adjacent facets at a constrained angle. Our method generates simplified shapes where
every dihedral angle between adjacent facets belongs to a restricted set, thus making the
assembly process quicker and more straightforward. Firstly, our method automatically
computes a simplified version of the input model, using the marching cubes algorithm on
the original mesh and iteratively performing local changes on the resulting triangle mesh.
The user can then perform an additional manual simplification to remove unwanted
facets. Finally, an unfolding algorithm, which takes into account the thickness of the
material, flattens the polygonal facets onto the 2D plane, so that a CNC milling machine
can fabricate it from a sheet of rigid material.

c© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Fabrication of digital objects has found a considerable interest
by researchers in computer graphics and geometry processing.
3D printers are the most commonly used machines to produce
physical representations of digital objects. In the typical scenario,
the printer deposits a filament, layer by layer, that solidifies and
forms the final result following a software-generated path. Apart
from specific limitations, which depend on the additive manu-
facturing technology used, these machines enable the creation
of arbitrarily complex geometries.

However, additive manufacturing is not the only technology
that allows reproducing physical objects. Subtractive techniques,
commonly performed with CNC milling machines, follow a
different philosophy: to reproduce a shape, a numerically con-

∗Corresponding author: E-mail Address: alessandro.muntoni@isti.cnr.it

trolled carving tool moves to remove material from a solid block.
These machines are mainly used to produce very regular objects
in the mechanical engineering field. CNCs can produce free-
form geometries, but the set of feasible shapes is constrained by
the characteristics of the machine employed. CNCs can have
3-, 4- or 5-axis, meaning that the tool moves along the three
principal axes and has one or two rotational degrees of freedom.
The choice of the machine is crucial to determine if the geometry
can be fabricated. This aspect, along with the difficulty of pro-
ducing toolpaths, especially for 4- and 5-axis machines, makes
subtractive techniques still “immature” for fabricating free-form
geometries.

We propose a novel method to generate a coarse approxima-
tion of an input geometry that is suitable for fabrication with
3-axis milling machines. In particular, we simplify a digital
shape to a mesh of flat polygonal facets and unfold this geom-
etry onto a set of flat pieces. These pieces can be fabricated

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review / Computers & Graphics (2019)

Fig. 1. From left to right: the input digital model; the result of the automatic simplification step (Section 3); the clean model after spurious facets removal
(Section 4); on top the unfolding plan for fabrication and on bottom the corresponding carved sheet (Section 5); the final assembled model manufactured
using a CNC milling machine and manually folded and glued (Section 6).

Fig. 2. V-Groove milling cutters can mill furrows with correct angles on
rigid materials, and they are available with different milling angles on the
market. We show here two cutter element used in our experiments.

by carving flat sheets of material and, once produced, can be
folded and assembled together to form an approximation of the
provided input shape (Figure 1).

As discussed in Section 2, many previous works aimed to
create a simplified model to obtain a polygon mesh for fabrica-
tion purposes. In particular, a recent trend is to process a digital
shape to obtain a representation using sheets of material cut
by laser-cutter machines. Traditionally, cuts are performed on
sheets of flat rigid materials and produce 2D shapes that can be
combined to form the desired object. All these works introduced
a variety of joint systems to allow an easy assembly process.
Joint problems arise when two adjacent primitives should be
joined manually along the joint edge at an arbitrary angle. In
these cases custom joint systems must be design to enforce the
desired angle avoiding errors.

Our idea differentiates from these methods since we want to

simplify our models to avoid the problem of designing joints.
Therefore we propose an approach that makes the assembly
process more manageable and less error-prone. We use CNC
machines with V-Groove milling tools to carve our models on
a rigid sheet of material (e.g., plywood, stiff paper, plexiglass).
V-Groove (or V-Router) cutters are accessories for milling which
allows engraving furrows on blocks of millable materials (Fig-
ure 2). In our setup, these V-shaped milling tools enable the
production of angled furrows on the edges of our flattened model.
This implies that each pair of adjacent flat polygons, once folded,
automatically form the desired angle (Figure 3).

(a) A 90◦ fold needs a 90◦ tool

(b) A 120◦ fold needs a 60◦ tool (c) A 60◦ fold needs a 120◦ tool

Fig. 3. Different folds made using V-Groove milling tools.

To use this carve-and-fold strategy, we need to simplify our
model so that all dihedral angles belong to a restricted and
well-defined set containing only angles that available V-Groove
milling cutters can carve. To enforce this constraint, we require
that each normal of the facets of the simplified model must
belong to a pre-defined set of values.

To summarize: we designed a simplification strategy whose
output is guaranteed to have normals belonging to a restricted
set. We employ Marching Cubes, working on a binary scalar
field defined by the input model to obtain a final model with a

Preprint Submitted for review / Computers & Graphics (2019) 3

reduced number of flat facets.
We designed and developed a GUI that allows the user to select
and remove all the unneeded facets obtained in the previous step.
We also introduced a novel unfolding algorithm suited for our
purposes whose output is a 2D representation of the simplified
model, which takes also into account the thickness of the flat
panel to be milled.
The last step of our pipeline produces the toolpath for the CNC
milling machine that fabricates the final model using V-Groove
tools.

This paper is an extension and revision of the material con-
tained in “Simplification of Shapes for Fabrication with V-
Groove Milling Tools” [1], presented at the 2018 Eurographics
Italian Chapter Conference, held in Brescia in October 2018. In
this article we included a new unfolding algorithm that better
suits for practical fabrication, and a set of fabricated results.

2. State of the Art

Our work fits into the domain of geometry processing for
digital fabrication [2, 3, 4]. More precisely, our work belongs to
the so called Stylized Fabrication domain [5], where the fidelity
of the manufactured artifacts is not the primary goal. In our case,
we want to produce a physical approximation of the input 3D
shape that is easy to manufacture and assemble. To do so, our
approach simplifies a 3D model to fabricate it from flat sheets
of rigid materials, like plywood. Differently from other works,
that rely on laser-cutters, we exploit subtractive technologies,
in particular 3-axis milling machines. These machines were
recently employed for the fabrication of general free-form shapes
using specific decomposition algorithms [6, 7]. In our case,
we use special cutting tools called V-Grooves, that enables the
creation of easy-to-fold joints with a precise angle.

One contribution of our method is the simplification technique
that we use to produce a small set of flat polygonal faces that are
subsequently flattened and used to produce physical artefacts.

In computer graphics mesh simplification is a well established
topic. Previous research in this field was more general purpose,
rather than oriented to 3D fabrication, and aimed at reducing
mesh complexity while preserving the geometric information
of the models [8]. Since our goal is to simplify meshes into a
small number of flat primitives, one approach that could fit our
purposes is VSA [9]. The authors proposed a method to create a
mesh approximation using a variational approach, reducing the
input geometry to a set of flat polygonal primitives. However,
this method do not satisfy the significant constraint we pose to
our system, i.e. the simplified mesh should include only a small
number of dihedral angles.
Polycube-based methods [10], instead, fulfil our requirements.
These approaches produce simplified models in which every
primitive is orthogonal to one of the three principal axes. These
methods have been traditionally used in many different contexts
of geometry processing and there is a vast literature on the topic
(e.g., polycubes generation [11], optimization [12], hexaheral-
ization [13]). Polycube meshes could be physically produced
using our manufacturing approach with V-Groove milling tools,
since all the dihedral angles between adjacent faces are 90 or

270 degrees. Even if our pipeline could accommodate such
simplification strategy, using polycubes would be very restric-
tive considering the diversity of V-Groove tools available on the
market and the poor quality of fabricated models.

Our technique is mostly related to approaches designed for
fabrication purposes. There are many methods that produce
tangible artifacts using flat, developable primitives that approx-
imate the object surface, such as papercafts [14]. Papercraft
techniques produce a set of paper pieces that can be cut, folded
and glued together to obtain a papercraft object. However, even
if the approximation degree can be quite high, when compared to
our approach, resulting papercrafts are hard to assemble. Other
methods explicitly investigate novel assembly processes to ob-
tain fabricated models. Some approaches rely, for example, on
interlocking mechanisms. Starting from an input geometry, these
methods automatically design a set of flat, laser-cut pieces that,
once assembled together, creates an approximate representation
of a provided geometry [15, 16, 17]. Other methods, also tar-
geted to laser-cut production, offer an interactive tool to create
custom interlocking structures [18] or start from an existing in-
terlocking design and optimize it to reduce the wasted material
on laser-cut sheets [19]. All these methods produce stylized
objects inserting flat pieces inside the object volume, but lack in
approximating the object surface. In our setup, instead, we want
to produce a closed 3D surface made of few polygonal planar
facets. Moreover, many of these methods produce a large amount
of custom designed pieces; compared to our work, that aims to
produce a small set of pieces that can be folded and assembled
easily, a large set of all different pieces increases assembly times
and complicate the whole manufacturing process.

Our approach is closely related to the work of Chen et al. [20],
which introduced a technique to approximate an input surface
with a small number of planar, polygonal faces that can be
fabricated with laser-cutters. However, with this method the
assembly process is very complicated: it needs custom made
connectors (see red pieces in Figure 4(a)), and it could take
several hours for a single model. In our case, having added the
constraint on allowed dihedral angles, we enable both fabrication
with V-Groove milling tools and also avoid to introduce joints.

Similarly, Chen and Sass [21] proposed a CAD modeler appli-
cation to generate laser-cut, planar structures with finger joints
placed on the facet edges (see Figure 4(b)). This avoids the need
to produce additional joints pieces but introduce artifacts on the
fabricated model surface (i.e. when the dihedral angle between
two adjacent pieces is not 90 nor 270 degrees), Also, this ap-
proach is able to produce sufficiently coarse result starting from
CAD-like models and cannot be applied to generic free-form
shapes.
Su et al. [22] improved the work in [21] by proposing a method
that, given a simplified model, generates a set of planar patches
having bevel joints that are ready for fabrication. These type of
joints control the dihedral angle between adjacent pieces, but
have practical issues due to the hardware used for the manufac-
turing: laser cutters are not able to manufacture them, generating
the same issues present in [21], and with 3-axis milling machines
are able to produce only approximations of the joints, creating
stepped surface on portions that should be flat (Figure 4(c)).

4 Preprint Submitted for review / Computers & Graphics (2019)

(a) [20]

(b) [21] (c) [22]

Fig. 4. Joint systems used in related works

In fact, this method achieves a correct reproduction only when
combined with additive manufacturing.

A different method [23] was introduced to produce a large
object more cheaply and quickly, by combining laser cutting
and 3D printing technologies. The approach generates a coarse,
internal base object composed of flat, lasercut pieces. Then, a
set of thin 3D printed pieces are attached to this structure to
reproduce the details of the input object. For the assembly of the
lasercut internal structure, similarly to other techniques, custom
joints are designed to reproduce the desired angle between pieces.
The goal of their work is faithful reproduction and goes beyond
the scope of this paper.

3. Surface approximation

The first step of our pipeline relies on the application of the
Marching Cubes algorithm to the input shape. Marching Cubes
[24] generates a triangle mesh of an iso-surface starting from a
scalar field. We generate the input scalar field of boolean values
immersing the input shape in a regular lattice of cubes. By con-
struction, facet normals of the resulting mesh belong to a finite
and well-defined set. As a result, all possible dihedral angles
between triangles are finite and known. In the next paragraph
we describe the set N of all the triangle normals that can be
generated.

Normals. A facet normal, which belongs to the set N, is a 3D
unit vector v where:

vx, vy, vz ∈ {+s, 0,−s} with : s ∈ {1,

√
2

2
,

√
3

3
}.

Normals in the set N are 3D vectors divided into three cate-
gories as listed below.

1. Six vectors with one non-zero component:

[±1, 0, 0], [0,±1, 0], [0, 0,±1].

2. Twelve vectors with two non-zero components:

[±

√
2

2
,±

√
2

2
, 0], [0,±

√
2

2
,±

√
2

2
], [±

√
2

2
, 0,±

√
2

2
].

3. Eight vectors with three non-zero components:

[±

√
3

3
,±

√
3

3
,±

√
3

3
].

Pairs of normals derived from this set form dihedral angles
that are mostly of 30◦, 45◦, and their multiples. Despite some
of these angles are not commonly available in the V-Groove
tools market, there are commercial services that allow to order
personalized V-Groove tools with arbitrary angles.

3.1. Initialization
We generate the lattice by regularly subdividing the bounding

box of the input mesh, taking care of having integer lattice
coordinates only. The lattice spacing is a function of the average
edge length of the mesh multiplied by a user-defined parameter,
which determines the resolution of the final simplified mesh. The
vertices of the lattice are labeled as 1 if they are inside the surface
or 0 if they are outside. We then run the discretized Marching
Cubes algorithm [25] onto the lattice with an unambiguous look-
up table [26] and a threshold included in the interval (0− 1). We
thus extract an iso-surface mesh with a restricted set of facet
normals. Even if we can merge all the adjacent triangles laying
on the same plane, as shown in Figure 5, the resulting mesh is
composed of a significant number of polygonal facets.

3.2. Geometry
The main idea behind our method is to switch signs in the

regular lattice to obtain a smaller number of polygonal facets
when re-running Marching Cubes on it. For this purpose, we
introduce the concept of Mask.

Mask is a set of adjacent cubes having a specific combination
of signs on their vertices which generates, using Marching
Cubes, an undesired triangulation in the output.

Every mask includes at least one set of Points of Interest
representing the vertices which signs, once switched, simplify
the resulting mesh. Applying the masks, we enlarge broad facets
and make small facets disappear.

Figure 6 shows an example of Mask. The mask in this ex-
ample is composed of four adjacent cubes with specified signs

Preprint Submitted for review / Computers & Graphics (2019) 5

Fig. 5. From left to right: the input model, the triangle mesh obtained
running DiscMC, and the polygon mesh resulting from merging the ad-
jacent triangles laying on the same plane. The meshes are, respectively,
composed of 3.628 triangles and 408 polygons. Triangles and polygons are
color-coded according to their normal.

Fig. 6. The configuration on the left is one of our Masks. It is a portion of
the lattice generating an iso-surface with two facets having normal of type
1 adjacent to a facet with normal of type 2. Switching the signs of the points
haloed in blue or orange, respectively, we obtain the configurations at the
center and the right. We choose the set of vertices to switch which favors
the enlargement of the broader adjacent facet.

on its points, and it has two sets of Points of Interest circled,
respectively, in orange and blue. Our algorithm selects one of
these two sets and switches it in order to change the triangulation
in two possible ways. We designed a basic set of 18 rotationally-
invariant base mask types that, expanded with rotations and
mirroring, generate a total of 340 masks. We describe in detail
all the of masks types in the Additional Material.

As shown, for some masks there are different ways to modify
the local geometry using different sets of Points of Interest, but
we can choose only one set. We give priority to larger polygonal
facets, and to do this we need to keep track of the areas of
each polygon. We keep track of polygonal facet areas using an
incremental update strategy and three data structures:

• the lattice;

• the triangle mesh obtained running Marching Cubes;

• the polygonal set obtained merging adjacent triangles.

Each cube of the lattice, once traversed by Marching Cubes,
generates triangles and we keep cross-links between them. Every
triangle links to the polygonal facet containing it. Using the
information in the data structures, we can efficiently choose the
Points of Interest to switch. We choose the ones that link to
the larger polygon, and we modify only the involved polygons
whenever a sign switches. This approach guarantees that every

switch of the sign is a local operation on the mesh, with time
complexity O(1).

MeshSimplification(Masks,Lat);
Data: a set of masks Masks, the lattice Lat
Result: the simplified mesh Mesh

begin
Mesh← MarchingCubes(Lat);
foreach triangle t ∈ Mesh do link t to the cube in Lat

containing it;
Seg← ComputeSegmentation(Mesh);
foreach facet f ∈ Seg do link f to the triangles in Mesh

forming it;
foreach cube c ∈ Lat do Q.push(c);
while Q is not empty do

c← Q.pop();
if c and the adjacent cubes match with m ∈ Masks then

SwitchSignes(c,m,Lat,Seg,Mesh);
Q.push(all modified cubes);

return Mesh

SwitchSignes(c,m,Lat,Seg,Mesh);

begin
Poi← getBestPointsOfInterest (c,m,Lat,Seg);
foreach vertex v ∈ Poi do Switch (v) in Lat;
update locally Mesh and Seg;
return;

Algorithm 1: Simplification of the mesh generated by
Marching Cubes.

A high-level view of our approximation approach is given in
Algorithm 1. We iteratively modify the geometry of the model
by putting in a queue all the cubes of the lattice not having equal
vertices labels. For each item in the queue, using its neighbors,
we first build all the possible local configuration comparable
with masks and then we perform a pattern matching against the
set of Masks.

When we find a match, we switch the best set of points of
interest, we update all the data structures, and we push back
all the modified cubes in the queue. This choice allows us to
identify a local set of triangles that was shifted away by the
chosen mask. The process ends when the queue is empty, or
when we detect a loop. In this case, the queue contains only
the cubes generating loops. In our experiments, loops always
involve local configurations of signs (and triangles) that, with a
sequence of sign switches, lead to a configuration already seen
in a previous iteration. In our solution, every time we detect
a loop we pick the configuration with the less number of flat
polygonal facets. It is worth to remind that the result of this
approximation is a manifold and watertight mesh.

As shown in Figure 7, the output models of our approximation
method have small facets that connect large orthogonal facets.
Even when an input mesh presents some sharp 90◦ edges, the
output of our approach presents small facets which act as a
junction between two orthogonal facets (other examples are in
Figure 19 a, e, f, k in Section 7). Using Marching Cubes, these
features cannot be avoided. However, one of the goals of our
work is to ensure an easy assembly process and these small facets

6 Preprint Submitted for review / Computers & Graphics (2019)

Fig. 7. Dihedral angles of 90◦ cannot be obtained using the Marching Cubes
algorithm. There will always be small facets as junctions between orthog-
onal facets. In most of cases, these facets are not suitable for the proposed
fabrication task and they could not contribute for a better approximation.

contribute to make it more challenging and error-prone. This
problem led us to introduce the interactive manipulation step
described in Section 4 which aims to remove these unwanted
features. The goal is to find a result more suitable for our fabri-
cation process and that is a better approximation of input models
containing sharp edges.

4. User-driven simplification

We have observed that the automatic approximation step re-
tains unwanted facets in the model. Due to the highly variable
nature of such facets, we have set up a Graphical User Interface
for allowing the user to select which kinds of facet are unwanted.
Our interest is twofold: in the immediate, we needed a tool to
manipulate our mesh and obtain a better fabricable one; in the
long term we aim to understand which aspects drive the selection
and thus formulate appropriate automatic criteria. Such a tool
requires to provide a fast facet deletion and mesh restructuring
to keep the resulting mesh manifold and watertight.

The facet deletion procedure is described in Algorithm 2. The
first step removes the selected facet (the blue one in the inset).
All the adjacent facets are now unbounded. We take these facets
and insert them into a counterclockwise-ordered circular buffer.

Note that, if a facet shares only a
vertex (and not an edge) with the se-
lected facet, the facet will not be con-
sidered adjacent (see gray facets in
inset). Each pair of adjacent facets in
this circular buffer generates a half-line (ray), obtained as the
intersection of the planes lying on them. Each triplet of facets
defines a pair of adjacent rays. We identify all the triplets that
generate intersecting rays, and we choose the one which inter-
section is closest to one of the vertices of the deleted facet. We
do this inside the choseStartingTriplet procedure.

If we can remove the facet, we add the selected intersection to
the new mesh, and we close the facet at the center of the triplet
prolonging its two edges which meet at the intersection point.
We then remove the facet from the circular buffer, and the two
external facets of triplet become adjacent, generating a new ray
with origin in the new vertex. This procedure is iterated on the
triplets until completion. The process behind the deletion of a
single facet can be better understood looking at Figure 8.

There are two termination condition:

• the last three (or more) facets in the buffer identify lines
intersecting on a single point;

• the last three (or more) facets in the buffer identify lines
that do not intersect.

Once the user selects the facet, the system performs the op-
erations described above and, if the first termination condition
is satisfied, it outputs the closed surface without the undesired
facet. Some examples of facets deleted using this approach are
shown on the base of the Moai model in Figure 9. Alternatively,
if all remaining facets identify lines that do not intersect, an
error message warns the user that the selected facet cannot be
removed. This is due to the local configuration of the adjacent
facets. Some deletion failure cases are shown in Figure 10.

Our algorithm works correctly on facets with an entirely con-
vex or entirely concave neighborhood, and when the intersec-
tions do not involve facets that are not adjacent to the selected
one. This last case is complicated to manage due to the high num-
ber of combinations that can occur. It is still an open problem
for us, and we plan to tackle it in the future.

FacetRemoval(Mesh[],f);
Data: the mesh Mesh[], the facet to be removed f

Result: the simplified mesh Mesh[]

begin
remove f;
compute the circular buffer Cb[] of the facets adjacent to f;
Tr[]← ChooseStartingTriplet(Cb[]);
while #Cb[] > 3 and Cb[] still contains consecutive

triplets that can be closed do
if Tr [2] can be closed then

ComputeIntersection(Tr[]) and close Tr [2];
remove Tr[] [2] from Cb[];
Tr[]← (Tr [1], Tr [3], Cb[].next(Tr [3]))

else
Tr[]← (Tr [2], Tr [3], Cb[].next(Tr [3]))

if #Cb[] = 3 and Tr[] can be closed then
close last triplet Tr[]

else
return error

return;

ChooseStartingTriplet(Cb[]);

begin
foreach adjacent triplet Tr[] in Cb[] do

v← ComputeIntersection(Tr[]);
sp← ClosestStartingPoint(Tr[],v);
dist← Distance(v,sp);
if dist is the shortest distance found then

Best[]← Tr[]

return Best[]

Algorithm 2: Facet removal and expansion of the adjacent
facets to close the hole.

The user can also select multiple adjacent facets and delete
them in a single step. This feature allows the simplification
of shapes having local configurations in which a facet has two

Preprint Submitted for review / Computers & Graphics (2019) 7

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Deletion of a facet. After removing f0 (b), we put all its adjacent facets in a circular buffer. We begin consuming facets in the buffer selecting the
triplet f8, f1, f2 since the intersection marked in red in (c) is the closest one. We reshape the central facet of the selected triplet (f1) adding the adjacent
portion of the canceled facet, and we remove it from the buffer (d). The process is iterated for the next nearest intersection (e-h) until we assign all the
portions of the canceled face and, thus, the surface is closed (i).

(a) (b)

Fig. 9. The Moai before (a) and after (b) the removal of some facets from
its bottom with our user-driven method. The quality of the approximation
does not change while the complexity of the model decreases significantly.

adjacent facets lying on parallel planes. In this case, deleting
only one facet would be impossible. The deletion algorithm used
is the same, and we show an example in Figure 11.

5. Unfolding the mesh

The next step in our pipeline is the unfolding of the mesh
to obtain an embedding of its facets on a planar surface. We

cut the polyhedron along edges and flatten it onto the plane
without introducing distortion. Indeed, due to the rigidity of
material employed, the mapping from 3D surface to the 2D
domain needs to be isometric. Hence, we are looking for a net of
the polyhedron, an edge-unfolding of a given 3D shape forming
a planar connected piece with no overlapping surfaces [27]. In
Figure 12 we show two unfoldings of the Moai, before and after
the user-driven simplification.

Unfortunately, it is not always possible to obtain an edge-
unfolding to one simple non-overlapping polygon. It does not
exist an efficient algorithm for determining whether a 3D shape
has a net. Even the existence of a net for convex polyhedra has
been an open problem since Shephard explicitly posed it in 1975
[28].

For our purposes we do not need a single net edge-unfolding:
we can divide the 3D shape into components, each of which
unfolds to a simple polygon (Figure 13). After manufacturing
each piece separately, we can glue them together to reproduce
our simplified shape.

Given a polygon mesh M = (V, F), we are looking for a
segmentation into a small number n of connected components
Ci that form a partitioning of the mesh and can be individually

8 Preprint Submitted for review / Computers & Graphics (2019)

(a) (b)

(c) (d)

Fig. 10. Non-removable facets. In the first row (a) (b), the planes onto
which the pink facets lie are parallel and never intersect, so that removing
the facet would leave a hole that can not be closed. In the second row
(c) (d), the expansion of the contouring facets would produce a mesh self-
intersection.

unfolded in a single piece with no overlaps.
A segmentation for which all the components are unfoldable

without overlap always exists, since each polygonal facet is a
simple polygon. We aim at obtaining a solution with the low-
est number n of components because edges inside a connected
component can be just glued and folded to the their final shape
while edges on component boundaries need also to be joined
before being glued and folded. The more the parts we obtain,
the more are the edges on the boundaries, and more difficult
it would be to glue them together to reproduce the final shape.
Unfortunately, we cannot determine the fewest number of parts
that are unfoldable to a net since an upper-bound exists only for
convex polyhedra [29].

5.1. Naive unfolding algorithm

To obtaining the smallest number of components, at first,
we designed a naive heuristic algorithm to unfold the target
shape. Given a polygonal mesh, we incrementally flatten onto
the plane the highest number of polygonal facets that form a
simply connected polygon. The heuristic works as follows:

1. pick a seed facet, its perimeter is the first boundary B of
the current unfoldingU;

2. pick one of neighbour facets on B, say f ;
3. if f causes no overlap expandU to include f and update
B;

4. go to step 2.

Fig. 11. Selection and deletion of two adjacent facets. The facets cannot
be deleted singularly due to the adjacency of two facets lying on parallel
planes. If selected together, we can close the surface extending the edges of
the adjacent facets on the border of the two deleted facets.

Fig. 12. The two versions of Moai shown in Figure 1 before (left) and after
(right) the user-driven simplification.

We stop when it is no longer possible to expandU, and we
obtain a first component C1 ⊆ F. If C1 = F we have finished.
Otherwise, we pick another seed facet among the remaining ones,
and we iterate the process. The Algorithm 3 lists a pseudo-code
of the method.

To pick the neighbor facet, we follow a breadth-first search
approach. This method has the advantage of spreading in dif-
ferent directions the growing polygon, causing relatively low
overlaps and producing unfoldings which are usually fitting in
a rectangular sheet with less possible scraps. The seed facet is
the largest convex one. To efficiently test intersections we use
an auto-balancing axis-aligned bounding box tree, that adapts
very well to our dynamic context [30].

This algorithm fulfils our goals
when it unfolds the shape in a single
component as, for example, the Duck
mesh in the inset. However, from our
experiments we realized that, espe-
cially for models having concave angles or a high number of
facets, this is typically not the case. When the algorithm gener-

Fig. 13. A polygon mesh for which a net does not exist (left) and its unfold-
ing in two components (right).

Preprint Submitted for review / Computers & Graphics (2019) 9

NaiveUnfolding(Mesh);
Data: the mesh to unfold Mesh

Result: the parts of the unfolding Comp[]

begin
Facets[]← the facets of Mesh;
Comp[]← ∅;
while Facets[] , ∅ do

initialize cmp[] with the largest seed facet f ∈
Facets[];

Facets[]← (Facets[] \ f);
while cmp[] can be expanded do

ExpansionStep(cmp[],Facets[]);

add cmp[] to Comp[];
return Comp[]

ExpansionStep(cmp[],Facets[]);

begin
Pick the first f ∈ Facets[] among the neighbor facets on

the current boundary bound (cmp[]) that causes no
overlaps when added to cmp[] along an edge;

Add f to cmp[] along the chosen edge;
Facets[]← (Facets[] \ f);
return;

Algorithm 3: Naive method for mesh unfolding.

ates more than one component, the output is often composed of
one large component containing the majority of the facets and
several other disjoint components containing a few facets (i.e.
from 1 to 3, see Figure 14).

5.2. Smart unfolding

To improve manufacturing, we designed a novel algorithm
that reduces the variance of the parts’ size. The idea behind the
method is to expand an increasing number of components in
parallel until all mesh facets are included in one component.

At first, we run the naive algorithm. If the output is a single
component the algorithm stops. Otherwise, we select the seed
facets of the two largest components obtained by the algorithm,
and we expand them in parallel, one facet at a time for each
part, until it is not possible to expand them anymore. If the final
result includes all mesh facets we have two components with,
approximatively, the same number of facets. Instead, if there are
remaining facets, we launch the naive algorithm over the subset
of remaining facets. Then we reiterate the parallel algorithms
adding one more seed obtained from the largest component
resulting from the last naive step. We proceed adding seeds
in this manner and restarting the parallel expansion until all
obtained pieces are expanded in parallel. This procedure is
described in detail in Algorithm 4.

The algorithm improves the solution at each iteration. In
Figure 15 we show the results obtained with the smart method
(input models are the same ones used in Figure 14).

6. Fabrication

The actual manufacturing is a two-stage process: milling and
assembly. First, a CNC milling machine works on a rectangular

(a) Max Planck (b) Laurana

(c) Buste

Fig. 14. Unfoldings obtained with the naive approach applied to some com-
plex models. The results illustrate the limitations of the naive algorithm.

SmartUnfolding(Mesh);
Data: the mesh to unfold Mesh

Result: the parts of the unfolding Comp[]

begin
Comp[]← NaiveUnfolding(Mesh);
if #Comp[] = 1 then

return Comp[]

numOfComp← 2;
repeat

sort Comp[] by number of facets;
Comp[]← the first numOfComp pieces from Comp[];
Facets[]← the set of facets not in Comp[];
foreach cmp[] ∈ Comp[] do

cmp[]← s ; /* s is the seed facet */

Facets[]← Facets[] \ s;

repeat
foreach cmp[] ∈ Comp[] do

if cmp[] can expand then
ExpansionStep(cmp[],Facets[]);

until no cmp[] ∈ Comp[] can expand;
if #Facets[] , ∅ then

Comp[]← Comp[] +

NaiveUnfolding(Facets[]);
numOfComp← numOfComp +1;

until #Comp[] = numOfComp;
return Comp[]

Algorithm 4: Smart method unfolding a mesh minimizing
the variance of the sizes of the components.

10 Preprint Submitted for review / Computers & Graphics (2019)

(a) Max Planck (b) Laurana

(c) Buste

Fig. 15. Results obtained with the smart unfolding method.

sheet of plywood or other similar material to carve the furrows
along the edges and, then, the components are folded and glued
together in order to reconstruct the digital shape physically. We
aim at obtaining a manufacturing process which minimizes the
scrap material and makes the shape simple to assemble. In the
following, we detail the fabrication process.

6.1. Packing

During the milling phase, we want to reproduce the compo-
nents in one or more rectangular sheets with the goal of produc-
ing as less scrap material as possible. We pack the components
into a rectangular sheets of chosen size using the Rasterized
Packer of the VCG Library [31]. This algorithm rotates and
translates each component multiple times and, using different
heuristics, it tries to fit them in the lowest number of target rect-
angles. At last it chooses a configuration that minimizes the
waste.

On top of the geometrical problem of packing we need to
take into account the requirements of the milling machine. The
edges of the components represent the centerline of the furrows
which have a thickness. Thus, we insert enough padding space
to separate the components and avoid intersections. Figure 16
shows how three components are packed into a rectangular sheet
for manufacturing a 14cm high object.

During the unfolding stage, we have not taken into account
the size and the shape of the sheets used for fabrication. Indeed,
a single component can exceed the maximum size of a sheet of
material. We avoid this by adapting the unfolding algorithm to
produce components that can be packed into rectangular sheets
of a given size. Each time a candidate facet is tested for compo-
nent expansion, we check if the oriented bounding box of the
current unfolded polygon fits into the target rectangular sheet. In
Figure 17 we show how the same mesh of Figure 16 is packed
in three rectangular sheets to manufacture a bigger object (25
cm height). For this case we use the Rotating Calipers method
[32] implemented in CGAL [33].

Fig. 16. Unfolding and packing the Moai model (14cm height) in a rectan-
gular sheet of 37×26 cm.

6.2. Manufacturing

For actual manufacturing of the models, we performed post-
processing of the unfoldings to generate the toolpaths. First, it is
necessary to separate concave from convex angles: the machine
carves the former on one side of the sheet, and the latter on the
other. We then partition the set of edges using their dihedral
angle, to sequentially carve each subset with different V-Groove
tools. The remaining parameters fed to the toolpath generation
procedure are: the thickness of the sheet and the height and
diameter of the tools.

To reproduce the outer surface with the correct size we need
to take into account that the edges have a thickness. The concave
angles, thus, push away on both sides their incident faces of
a quantity equal to half of the upper width of the furrow. An
additional dummy facet appears on the unfolding to accommo-
date this. We further modified the unfolding stage to add these
dummy facets. The facets’ sizes depend on the thickness of
the target sheet to be carved. The unfolding of Figure 1 is an
example of result where dummy facets are shown in black.

For the toolpath generation, we can use any software that
allows engraving manufacturing. When the target sheet height
is greater than the available V-Groove flute length, as in our
experiments, we transform each edge into a dense aligned set of
parallel paths and use a standard toolpath generating tool. We
used Autodesk Fusion 360 for toolpath generation.

6.3. Assembly process

Once we have the components manufactured we can assemble
the final model. In Figure 18 we show an example of the ma-
nipulation needed to glue together the various fabricated parts.
A more extensive visual explanation is available in the video
provided as supplementary material.

7. Results

The approximation proposed in Section 3 is based on March-
ing Cubes and therefore, our outputs have the same properties
guaranteed by this algorithm: all our results are water-tight 2-
manifold meshes made of polygonal flat facets with normals
belonging to a restricted, known set. The method is very quick:
every approximate model presented in this paper are generated
within ten seconds.

Preprint Submitted for review / Computers & Graphics (2019) 11

Fig. 17. Unfolding and packing the Moai model (25cm height) in rectangular sheets of size 37×26 cm.

Fig. 18. An example of the assembly process for the Moai model.

Model # FAS # FUS Red. (%) n

Abstract Sculpture 108 67 38.0% 4
Bimba 115 72 37.4% 6
Buste 128 91 28.9% 10
Duck 41 16 61.0% 1
Egyptian Statue 293 99 66.2% 16
Laurana 159 68 57.2% 8
Kitten 242 125 48.3% 11
Max Plank 67 36 46.3% 3
Moai 43 23 46.5% 1
Pensatore 113 87 23.0% 7
Sphynx 118 73 38.1% 9

Table 1. Number of polygonal flat facets in the approximate models (# FAS)
and after the user-driven intervention (# FUS). The third column shows the
reduction percentage after the user interaction. The fourth column lists the
number of components n in the edge-unfolding of the simplified shape.

The user-driven simplification tool described in Section 4
is simple to use after some training, and required around 4-5
minutes to produce each presented result. The simplification
time is only due to the user navigation: the most significant part
of the time is due to searching for the undesired facets, while the
elimination and the expansion of the neighbors is instantaneous.

Several results obtained with the approximation and simpli-
fication methods are shown in Figure 19. For each model, we
show the result obtained by the surface approximation in the
center column, and after the user-driven simplification in the
right column. For the same results, the number of polygonal
facets and the number of components are reported in Table 1.

The unfolding method described in Section 5 is always able
to produce a low number of non-overlapping pieces similar in
size. Moreover, once the size of the tangible object is chosen,
the packing process enables us to perform a manufacturing that
minimizes the scrap material on sheets of a given size. The
entire process to unfold and pack of shape takes well within a
second in all tested cases. We show two results in Figure 20.

For each simplified model, we were able to obtain a result that
can be manufactured and reconstructed into the target physical
object. We produced five different objects: three in plywood
(a cube: Figure 21; a modified sphere: Figure 22; a 3-genus
model: Figure 23) and two in sturdy cardboard (the Moai model:
Figure 1; the Laurana model: Figure 24). The fabrication process
produced, for each tested input model, an object which can be
folded into the target shape reducing the waste. The milling time
relates to the complexity of the input model and the size of the
target object. It took approximately four hours to manufacture
the Moai model while we were able to fabricate the sphere, much
simpler, in just one hour.

The assembly proved to be quite straightforward. We paid
particular attention to the folding order for the 3-genus model
since the internal portion of the shape next to the holes has to
be glued before closing the shape. We assembled a relatively
complex model as the Moai in approximately fourty minutes,
excluding the time needed for the glue to dry.

8. Conclusion and Future Works

We proposed a novel method that enables the simplification of
digital shapes for an easy and quick assembly process after the
fabrication using CNC Milling and V-Groove tools. Our results
are preliminary and we plan to improve them in multiple ways.

12 Preprint Submitted for review / Computers & Graphics (2019)

(a) Abstract Sculpture (b) Bimba (c) Buste

(d) Duck (e) Egyptian Statue (f) Kitten

(g) Max Planck (h) Pensatore (i) Sphynx

Fig. 19. Models processed with our pipeline not yet fabricated. We first process the input model (left) with our automatic approximation algorithm (center),
and then the user operates to remove the undesired facets with our interactive simplification tool (right).

Fig. 20. Results of the unfolding and packing process for the Laurana (top)
and Max Planck (bottom).

Fig. 21. Manufacturing of a cube. From left to right: digital model, unfold-
ing, and a picture of the fabricated model.

Fig. 22. Manufacturing of a modified sphere. From top left to bottom right:
the digital simplified model, its unfolding, the carved sheet of plywood, and
a picture of the fabricated model.

Preprint Submitted for review / Computers & Graphics (2019) 13

Fig. 23. Manufacturing of a 3-genus mesh. From top left to bottom right:
the input digital model, the simplified model, the model after the user inter-
action, its unfolding in two sheets, and a picture of the fabricated model.

Fig. 24. Manufacturing of the Laurana Model, 22cm tall. From top left to
bottom right: the input digital model, the simplified model after the user
interaction, the assembled model, its unfolding (rendered and milled).

Surface approximation. We plan to introduce explicit and im-
plicit symmetry control. In the current setup, we cannot guaran-
tee that the final manufactured object is symmetric starting from
a symmetric input. One possibile solution could automatically
detect the shape symmetry with an algorithm like the one pre-
sented in [34], and then apply the algorithm to half of the model,
obtaining the other half in post-processing by mirroring.

User-driven simplification. We plan to add automatic criteria to
suggest facets for selection to the user. We also plan to improve
the identification of a solution involving non-adjacent facets. To
reach this goal we need to take in account not only the 1-ring
of the selected facet but an n-ring, where n is a parameter to be
carefully studied.

Cutting and unfolding. We intend to study the vast literature
on cutting, unfolding and packing related to texture mapping to
understand if some techniques used for generating texture atlases
could be applied to our pipeline. The main difference is that
we do not allow deformation in the projection of the mesh onto
the plane for the unfolding, but the final assembly could benefit
from choosing different cutting and unfolding not obtained with
our current growing approach.

Acknowledgements

The implementation relies over the library CG3Lib [35] for
all the steps of our algorithm. This work was partly financed by
the DSURF PRIN 2015 (2015B8TRFM) project. Stefano Nuvoli
gratefully acknowledges Sardinia Regional Government for the
financial support of his Ph.D. scholarship (P.O.R. Sardegna F.S.E.
Operational Programme of the Autonomous Region of Sardinia,
European Social Fund 2007-2013 - Axis IV Human Resources,
Objective l.3, Line of Activity l.3.1.).

References

[1] Muntoni, A, Scalas, A, Nuvoli, S, Scateni, R. Simplification of Shapes
for Fabrication with V-Groove Milling Tools. In: Smart Tools and Apps
for Graphics - Eurographics Italian Chapter Conference. The Eurographics
Association; 2018, p. 1–12.

[2] Liu, L, Shamir, A, Wang, CC, Whiting, E. 3D printing oriented design:
geometry and optimization. In: SIGGRAPH ASIA Courses. 2014, p. 1–1.

[3] Umetani, N, Bickel, B, Matusik, W. Computational tools for 3D printing.
In: SIGGRAPH Courses. 2015, p. 9–1.

[4] Livesu, M, Ellero, S, Martı́nez, J, Lefebvre, S, Attene, M. From 3D
models to 3D prints: an overview of the processing pipeline. Computer
Graphics Forum 2017;36(2):537–564.

[5] Bickel, B, Cignoni, P, Malomo, L, Pietroni, N. State of the art on
stylized fabrication. Computer Graphics Forum 2018;37(6):325–342.

[6] Muntoni, A, Livesu, M, Scateni, R, Sheffer, A, Panozzo, D. Axis-
Aligned Height-Field Block Decomposition of 3D Shapes. ACM Trans
Graph 2018;37(5):169:1–169:15.

[7] Zhao, H, Zhang, H, Xin, S, Deng, Y, Tu, C, Wang, W, et al. DSCarver:
Decompose-and-spiral-carve for Subtractive Manufacturing. ACM Trans
Graph 2018;37(4):137:1–137:14.

[8] Cignoni, P, Montani, C, Scopigno, R. A comparison of mesh simplifica-
tion algorithms. Computers & Graphics 1998;22(1):37 – 54.

[9] Cohen-Steiner, D, Alliez, P, Desbrun, M. Variational shape approxima-
tion. ACM Transactions on Graphics (TOG) 2004;23(3):905–914.

[10] Tarini, M, Hormann, K, Cignoni, P, Montani, C. Polycube-maps. ACM
transactions on graphics (TOG) 2004;23(3):853–860.

14 Preprint Submitted for review / Computers & Graphics (2019)

[11] Livesu, M, Vining, N, Sheffer, A, Gregson, J, Scateni, R. Polycut:
monotone graph-cuts for polycube base-complex construction. ACM
Transactions on Graphics (TOG) 2013;32(6):171.

[12] Cherchi, G, Livesu, M, Scateni, R. Polycube simplification for coarse
layouts of surfaces and volumes. Computer Graphics Forum 2016;35(5):11–
20.

[13] Livesu, M, Muntoni, A, Puppo, E, Scateni, R. Skeleton-driven Adap-
tive Hexahedral Meshing of Tubular Shapes. Computer Graphics Forum
2016;35(7):237–246.

[14] Mitani, J, Suzuki, H. Making papercraft toys from meshes using strip-
based approximate unfolding. ACM transactions on graphics (TOG)
2004;23(3):259–263.

[15] Schwartzburg, Y, Pauly, M. Fabrication-aware design with intersecting
planar pieces. Computer Graphics Forum 2013;32(2pt3):317–326.

[16] Cignoni, P, Pietroni, N, Malomo, L, Scopigno, R. Field-aligned mesh
joinery. ACM Transactions on Graphics (TOG) 2014;33(1):11.

[17] Richter, R, Alexa, M. Beam meshes. Computers & Graphics 2015;53:28–
36.

[18] McCrae, J, Umetani, N, Singh, K. Flatfitfab: interactive modeling with
planar sections. In: Proceedings of the 27th annual ACM symposium on
User interface software and technology. ACM; 2014, p. 13–22.

[19] Koo, B, Hergel, J, Lefebvre, S, Mitra, NJ. Towards zero-waste furni-
ture design. IEEE transactions on visualization and computer graphics
2017;23(12):2627–2640.

[20] Chen, D, Sitthi-amorn, P, Lan, JT, Matusik, W. Computing and fabricat-
ing multiplanar models. Computer graphics forum 2013;32(2pt3):305–315.

[21] Chen, L, Sass, L. Fresh press modeler: A generative system for physically
based low fidelity prototyping. Computers & Graphics 2016;54:157–165.

[22] Su, Z, Chen, L, He, X, Yang, F, Sass, L. Planar structures with
automatically generated bevel joints. Computers & Graphics 2018;72:98–
105.

[23] Song, P, Deng, B, Wang, Z, Dong, Z, Li, W, Fu, CW, et al. Cofifab:
coarse-to-fine fabrication of large 3D objects. ACM Transactions on
Graphics (TOG) 2016;35(4):45.

[24] Lorensen, WE, Cline, HE. Marching cubes: A high resolution 3D surface
construction algorithm. ACM siggraph computer graphics 1987;21(4):163–
169.

[25] Montani, C, Scateni, R, Scopigno, R. Discretized marching cubes. In:
Proceedings of the conference on Visualization ’94. VIS ’94; Los Alamitos,
CA, USA: IEEE Computer Society Press; 1994, p. 281–287.

[26] Montani, C, Scateni, R, Scopigno, R. A modified look-up table
for implicit disambiguation of Marching Cubes. The Visual Computer
1994;10(6):353–355.

[27] Damian, M, Flatland, R, O’Rourke, J. Grid vertex-unfolding orthogonal
polyhedra. Discrete & Computational Geometry 2008;39(1):213–238.

[28] Shephard, GC. Convex polytopes with convex nets. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 1975;78(3):389403.

[29] Pinciu, V. On the fewest nets problem for convex polyhedra. In: CCCG -
Canadian Conference on Computational Geometry. 2007, p. 21–24.

[30] Jiménez, P, Thomas, F, Torras, C. 3D collision detection: a survey.
Computers & Graphics 2001;25(2):269–285.

[31] Cignoni, P, Ganovelli, F, et al. VCG Library: The Visualization and Com-
puter Graphics Library. 2018. Http://github.com/cnr-isti-vclab/vcglib/.

[32] Toussaint, G. Solving geometric problems with the rotating calipers.
1983.

[33] CGAL, Computational Geometry Algorithms Library. 2018.
Https://www.cgal.org.

[34] Panozzo, D, Lipman, Y, Puppo, E, Zorin, D. Fields on symmetric
surfaces. ACM Transactions on Graphics (TOG) 2012;31(4):111.

[35] Muntoni, A, Nuvoli, S, et al. CG3Lib: A structured C++ geometry
processing library. 2018. Https://github.com/cg3hci/cg3lib.

	Introduction
	State of the Art
	Surface approximation
	Initialization
	Geometry

	User-driven simplification
	Unfolding the mesh
	Naive unfolding algorithm
	Smart unfolding

	Fabrication
	Packing
	Manufacturing
	Assembly process

	Results
	Conclusion and Future Works

