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Chapter 1

Introduction

One of the main research fields that has gathered increasing attention from Computer Graphics
researchers is Fabrication. Fabrication goal is to obtain a physical object, starting from a digital
model stored in a computer. 3D printers are the most known machines that allow to fabricate a
virtual shape (also quiet complex) using different materials and techniques, but other techniques
are also available.

In this thesis, we consider the problem of fabricating a virtual shape by cutting rigid materi-
als (e.g. wood or thick paper) that are glued together along their boundaries. The main challenge
of this approach is twofold: on one side it is necessary to obtain a physical model that visually re-
semble to the original model; on the other side, we need a model that is easy to build using the
above-mentioned fabrication technique: this model must have a low total number of pieces, and
the complexity of each piece must be low, so as to make the assembly process easier and to reduce
fabrication costs.

We propose an algorithm that, given a 3D
model, simplifies the input model in such a way
that is buildable with laser cut techniques on
plywood. We decided to focus on the minimiza-
tion of costs of fabrication and simplification of
the construction process. To minimize fabrica-
tion costs, that depends especially on the cut-
ting times (e.g. for energy, usury), we aim to
delete, where is possible, frequent changes of
cutting direction during the cut process. Toal-  _____ ...
low an easy and guided construction process, ~ ===-- N
we decided to facilitate the folding planes pro-
cess by reducing the set of possible angles be-
tween two adjacent faces to a restricted set of
well-known angles, that are perfectly suitable
for the cut process. In this way, during the fab-
rication, see that two adjacent pieces fit perfectly is more simple, as shown in Figure 1.1. To do that,
the input model is simplified in such a way that the orientation of every single face is well-defined
and belongs to a restricted set of allowable orientations.

The rest of this thesis is organized as follows: Chapter 2 reviews previous works on fabrication-
oriented modeling; Chapter 3 shows an overview of our algorithm, Chapter 4 describes how the algo-
rithm calculates the resulting topology of the model, and Chapter 5 shows how, using that topology,

Figure 1.1: Example of an angle between two ad-
jacent pieces during a cut process



is possible to obtain the resulting geometry of the model. In Chapter 6 we show some results, and
finally, in Chapter 7 we conclude with a short summary, achievements and future developments.



Chapter 2

Background

The actual state of the art presents different 3D model simplification algorithms oriented at model
construction by cutting and assemblage.

2.1 Variational Shape Approximation

Cohen-Steiner et al. [CSAD04] presented an algorithm for shape approximation, maintaining its ge-
ometric fidelity. Julius et al. [JKS05] proposed D-Charts, an algorithm for mesh segmentation that
produces developable charts for making stuffed toys. These two approaches produce a simplifica-
tion of the model where the charts flatness is not guaranteed, and therefore are not suitable for
fabrication using rigid materials like plywood.

2.2 Fabrication

Elber [EIb95] proposed a fabrication scheme that automatically approximates a model creating de-
velopable surfaces that can be unrolled onto a plane.

Mitani and Suzuki [MS04] proposed an algo-
rithm for papercraft construction, starting from
a 3D model (Figure 2.1). Papercraft is a con-
struction method for three-dimensional objects
using paper, glue and scissors: paper strips are
cutted, then are glued side by side, forming a
representation of the real object. This algo-
rithm, starting from a 3D model, creates paper
strips that can subsequently printed, cutted and
glued. This kind of papercraft are suitable for
experts and fans, but are not recommended for
people with little experience with papercrafts:
bunny model construction toke 2 1/1 hours, and
the rhinoceros model toke 3 /2 hours. Furthermore, these models are not suitable for construction
using other materials like wood, which is perfect for construction of toys with educational or sim-
ply entertainment purposes. Indeed, a wood-cut process on these model faces would be extremely
slow (and therefore expensive), and error-prone because the angle between every pair of faces is
arbitrary.

Figure 2.1: Mitani et al papercraft models



(a) 123DMake models with 30 and 130 vertexes (b) Zimmer et al. Zometool® model

Figure 2.2

Shatz et al. [STL06] presented an algorithm for segmenting a mesh into developable approxima-
tions for paper crafting, reducing the error between the given model and the paper model.

Autodesk’s 123D Make [Aut14] is a software that allows 3D models construction using multiples
techniques, including "folded panels" technique that gives an output similar to Mitani et al. and
Shatz et al. ones, with the possibility of choose number of vertexes and the "joint" technique that
user wants to use for joining the paper strips. Nevertheless, by selecting a big number of vertexes,
we obtain a model that is very difficult to buid; instead, if we select a small number of vertexes, we
obtain a model that has a simpler building process (not much), and that model is too simple to look
like the original, as shown in Figure 2.2a.

Zimmer et al. [ZLAK14], starting from a 3D model stored in a computer, presented an algorithm
that gives in output a simplified model buildable with Zometool®(Figure 2.2b), that is a building com-
posed of nodes and edges that can be linked to each other. Every node allows 62 different entries for
edges, tying the possible angles between adjacent faces to a small finite set. In any case, the model
is suitable only for Zometool® constructions, that is complex and, at the moment, an algorithm for
automatic generation of a guide for the build process is not known.



Chapter 3

Algorithm Overview

Our algorithm is divided in two principal steps: the goal on the first step is to create a good segmen-
tation of the input model, where every chart corresponds to a planar polygon in the output model.
In this step we first create a segmentation using an optimization algorithm, then we process the
segmentation to remove noise and charts that aren’t physically developable. In the second step we
create the geometry of the model, first deforming the mesh in such a way that every chart is planar
and well-oriented, then we take the corners of the deformed model (vertexes with three incident
charts at least) and create the coarse model. We process the coarse model using edge collapsing
techniques, and we do a final deformation (that we called planarization) to obtain the final model,
ready for fabrication. Figure 3.1 shows the principal steps of our algorithm.

(a) (b) (c) (d)

Figure 3.1: The kitten model, model topology, model deformation and model planarization






Chapter 4

Making Topology

4.1 Goals

Given an input model, the first step is to obtain a good segmentation that gives a physically devel-
opable simplification that is simply to fabricate and construct through wood-cut process. In the
next subsection, we analyse properties that must be met to reach our purpose.

4.1.1 Orientations

We initially decided to limit the possible orientations of charts to 26, where every orientation is
the normal to the face, that is a 3D vector that belongs at the 3D vectors set composed by the 3-
permutations with repetition of 3 values —1, 0 and +1, excluding the [0 0 0] null vector. As in
Marching Cubes ([LC87], [MSS94]), we can imagine to obtain all orientations considering:

« the 6 principal orientations that are aligned to the 6 cube’s faces, that are:

o +x([+1 0 0])
o +y ([0 +1 0])

o —z+y([-1 +1 0])
o —x—y([—l -1 OD;
o +z—y([+1 —1 0])
o +z+z([+1 0 +1])
o —z+z([-1 0 +1));
o —z—=z([-1 0 —1));
o+z—=z([+1 0 —1])



(a) Deformed sphere using 26 orientations (b) Deformed sphere using 18 orientations

Figure 4.1

+

)

o +y+z([0 +1 +1));
o —y+2z([0 =1 +1]);
[ ))

+

o —y—2z(0 -1 -1
o +y—z([0 +1 —1]);

.
7

« the 8 orientations obtained by cutting everyone of the 8 cube’s vertexes, that are:

o +r+y+z([+1 +1 +1));

o —z—y—z([-1 -1 —1));

otz —y—z([+1 -1 —1])

o —z+y+z([-1 +1 +1])

o +r+y—z(+1 +1 —1])

o —z—y+z([-1 -1 +1])

o +r—y+z([+1 -1 +1])
[

o —x—i—y—z( -1 +1 —1}).

However, as shown in Subsection 4.1.2, these orientations do not allow to obtain a easy buildable
model. Therefore, we decided to use only the first 18 orientations, as shown in Figure 4.1b.

4.1.2 Angles between Adjacent Faces

Given two adjacent faces with different normal (we assume that two adjacent faces with the same
normal are the same face), they can be adjacent to each other in four different ways, as shown in
Figure 4.2e. We consider only the cases (a) and (b), because we assume that normals are facing
outwards the model. The only difference between the cases (a) and (b) is that in case (a) we have a
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() (d)

(e) Possible adjacency between two faces (f) Relation between normal’s and face’s angles

Figure 4.2

concave internal angle, and in case (b) we have a convex internal angle. Given two normals U and
¥ of two adjacent faces, the internal angle is calculated (as shown in the Figure 4.2f ):

« a = m — f3 if the internal angle is convex;

« a = 7 + [ if the internal angle is concave;

where 3 is the angle between the two normals @ and ':
B=cos (U -7)

However, in terms of fabrication, process for cutting an internal concave angle is exactly the
same of cutting an internal convex angle, by simply reversing the piece depending on the angle
convexity, as shown in Figure 4.3. Therefore, given two normals @ and ¥/, we can focus only on
angles calculated in the following way:

a=m1—p

B = cos’l(ﬁ . 7)

In a fabrication process, the cut angle in the edge will be exactly half of the convex angle between
the two adjacent faces: therefore, if the internal angle is «, then the cut angle in the two wood pieces

a
Now we can calculate all the possible convex angles between all possible combinations of adja-
cent faces. Will not be taken into account adjacent faces with the same orientation, because we can

merge these faces, and adjacent faces with opposite orientations, because they are not physically
developable. If we use all 26 possible orientations listed in Subsection 4.1.1:

« A face with generic normal +u (vector with only one component different by 0):

o adjacent with a face having normal with only one component different by 0:
¢ generates always a 90° angle;
o adjacent with a face having normal with two components different by 0 generates a:

< 135° angle if the u component is different by 0 and has the same sign;
¢ 45° angle if the u component is different by 0 and has opposite sign;



<

S

: .

(a) Internal convex angle (b) Internal concave angle

Figure 4.3: Possible adjacency between two faces

& 90° angle if the u component is 0;
o adjacent with a face having normal with three components different by 0 generates a:

& ~ 126° angle if the u component has the same sign;
& = 54° angle if the u component has opposite sign;

« A face with generic normal +u + v (vector with two components different by 0):

o adjacent with a face having normal with two components different by 0 generates a:
¢ 120° angle if has a component (between u and v) different by 0 and with same sign,
and the other equal to 0;

¢ 60° angle if has a component (between u and v) different by 0 and with opposite
sign, and the other equal to 0;

& 90° angle if both the u and v components are different by 0 and only one has the
same sign;

o adjacent with a face having normal with three components different by 0 generates a:

) = 145° angle if has both u and v components with same sign;
& = 35° angle if has both u and v components with opposite sign;

& 90° angle if one component (between u and v) has the same sign and the other has
opposite sign;

« A face with generic normal +u + v 4+ w (vector with three components different by 0):

o adjacent with a face having normal with three components different by 0 generates a:

10



& = 70° angle if the number of components with the same sign is even;
& =~ 110° angle if the number of components with the same sign is odd;

We can count only 11 possible angles between every pair of faces having one of the 26 possible
orientations defined above. However, using these orientations, we can’t have a well-defined cut pro-
cess: there are angles that are not well-defined, represented by numbers with unlimited decimals. A
cut machine works fine with angles such as 30°, 45°, 60°, 90°, 120°, 135° and 150°, and we can limit
our angles set to these values by simply not including the last 8 orientations (vectors with three
components different by zero), that are the only that generates bad angles. In this way, we have a
set of 18 possible orientations and only 7 possible angles: 45°, 60°, 90°, 120°, 135°. A model that has
only this kind of angles is perfect for a fabrication process by cutting and folding wood panels.

From this point onwards, for a better understanding of the segmentation, we associate different
colors to the labels. The colors are calculated as following: using the hexadecimal color notation,
and associating two ciphers for every vector component, if the component is 0, then the two ciphers
will be 00, else the two ciphers will be FF. In this way, we have:

+ Red color if label is 2 (#FF0000);

» Green color if label is =y (#00FF00);

« Blue color if label is 4=z (#0000FF);

» Yellow color if label is £z & y (#FFFF00);

« Magenta color if label is +2 + 2 (#FFOOFF);

« Cyan color if label is +y 4 = (#00FFFF);

4.2 Trivial Labeling

Now that we have established what are the possible orienta-
tions that a face can have, we can compute a segmentation on
a 3D triangle mesh. A first solution can be a "trivial labeling",
that associates to each triangle one of the 18 possible orienta-
tions, assigning a label.

The trivial labeling is quite simple: for every triangle, we
calculate the angular distance, using the dot product, between
its normal and all the 18 possible directions. We are search-
ing the orientation with minimum angular distance to the nor-
mal of the triangle, therefore we select the orientation with the
maximum result of the dot product.

In Figure 4.4 we can see a segmentation of the bunny model
using this method. This is not the result that we want: the
charts (that are sets of adjacent triangles with the same label)
have too much noise (e.g. single triangles with different labels
at the center of a chart, triangle strips or chart not physically
developable). We desire a segmentation composed of com-
pact charts without holes (if they aren’t a feature of the input
model) and without noise. We can obtain a segmentation more
closer to our ideal segmentation computing a Graph-Cut based labeling, shown in the Section 4.3.

Figure 4.4: Trivial labeling

11



4.3 Graph-Cut Labeling

To obtain a good segmentation with compact charts, like in [LVS*13], we decided to use an optimiza-
tion algorithm that minimizes a cost described by the labels associated with triangles.

4.3.1 Graph-Cut Algorithm

Graph-Cut ([BVZ01],[KZ04],[BK04]) is a Max-Flow/Min-Cut algorithm on graphs, that, given a graph
G = (N, A) and a finite set of labels L, finds a labeling ¢ (a function that associates, for every site
p € N alabel ] € L) that minimizes the following Energy:

E(l) = DataCosts(l) + SmoothCosts({) + LabelCosts()

More specifically:
DataCosts(l) = Z D,(1,)
p

where [, is a potential label for node p € N, and D, is the cost of assigning [,,;

SmoothCosts(l) = Z Vo (lps 1)
pq

where p,q € N, (p, q) € A, and V,,, is the cost for assigning [,,, [, to p and ¢;

LabelCosts(l) = Z hy(0)
L/

where L' is some subset of labels L, and i, adds a cost if and only if at least one label I € L’ appears
in the labeling /.

The first term in the energy function E'(¢) is typically called the data term, and it consists of the
sum over all nodes p of the penalty (or cost) D(p, [,), what should be the cost of assigning label I, to
node p. The second term is a sum over all pairs of neighboring nodes (p, q) € A. That is there is a
neighborhood relation on the set of pixels (this relationship is symmetric, that is if p is a neighbor
of ¢ then ¢ is a neighbor of p). This second term is typically called the smoothness term. The third
term is a sum over all labels (or, more generally, all subsets of labels) such that each label can have
non-negative penalties associated with its use. This "label cost" feature is used to encourage labeling
that use as fewer unique labels or, more generally, labels from as few unique subsets as possible.

4.3.2 Graph-Cut in our Algorithm

In our implementation, the graph is composed of a node for every triangle in the mesh, and two
nodes are neighbors if and only if the associate triangles are adjacent. Therefore, with Graph-Cut
we can do local operations like avoiding chart adjacent with another chart with opposite normal,
by simply assign a greater cost for adjacent nodes with opposite labels. However, we can’t do global
operations, like make a chart has at least three neighbors. These kind of operations will have to be
made after the execution of Graph-Cut algorithm.

12



Data Term

The Data Term function, for a given node and a given label, returns a cost for associating the label to
the node (triangle). Intuitively, more the normal of the triangle is close to the orientation associated
with the label, then lower will be the cost of associating the label to the triangle. Also i in this case,
the closeness is defined by the dot product of the two vectors. Given the triangle normal 7 and the
orientation _l> of a label [, the cost function is:

(?-T>—1 :

g

N |

%
DataTerm(?, Iy=1-—¢

The o term determine the amplitude of the bell: in
our implementation ¢ = 0.1. The graph of this
function is shown in Figure 4.5. We used this func-
tion to obtain a gradual increase from the lower cost N /
to the upper cost, that, in this case, are respectively \

~ 0 and ~ 1. If the dot product between the two V]
vectors 1s 1, the cost will be ~ 0 because the angle \

between ¢ and 7 is 0° and the triangle is already ‘\\ /

perfectly oriented to 7. We have a maximum cost
from —1to~ 0.7,i.e. a angular distance from ~ 45°

%
to 180°, because if ¢ and 7 have at least an angular
distance of 45° it means that certainly there is an;
other label !’ that has an angular distance with 7

Figure 4.5: Data Term
less than 45°.

Smooth Term

The Smooth Term function, for a given pair of neighbors nodes
p and ¢, and a pair of labels I, and [, (not necessarily 1, # [,)
returns a cost for associating [, to p and [, to ¢. Intuitively,
we must avoid adjacency between faces with opposite orienta-
tions, because they aren’t physically developable: we can avoid
this simply verifying if [, and [, are opposite and, in that case,
returning a cost greater than another normal cost calculated
using non-opposite labels. Moreover, if the two triangles are
associated at the same label, the cost will be 0. In all other
cases, we have to use an appropriate function.

In this function we will use a user parameter, the compact-
ness factor c. Increasing this parameter, will increases the com-
pactness of the carts, reducing the number of small charts and
small features. However, a too big value can return a bad seg-
mentation, that depends by the input model resolution. An ex-
ample of segmentation using a too big compactness factor is
shown in Figure 4.6.

Intuitively, we want a segmentation that divide areas with
different orientations: if two adjacent triangles have different

Figure 4.6: Sphere model with
compactness factor ¢ = 20

13
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(a) Compactness factor ¢ = 1.0 (b) Compactness factor ¢ = 2.0

Figure 4.7: Different compactness factors with e = 0.05

labels but same orientations, they pay the maximum cost. Otherwise, if the angle between the two
triangle normals is at least 45°, they pay the minimum cost. Therefore, the function is:

1[4 -1, —1)
— = 2 o
+ €

— —
SmoothTerm(l,, l,, t,, t,) =c- | e

Also in this case, the o term indicates the bell amplitude. Here, 0 = 0.15: as shown in Figure 4.7, in
this way we have a considerable increase on about 45°.

In the smooth term we need also a term e # 0 because the compactness factor ¢ must influence
also when we have a 0 cost. However, we must be careful because the € term goes to be multiplied
with the compactness factor, increasing its weight in the resulting function. Therefore, we need a
small value, but different by zero. In our implementation, e = 0.05. Figure 4.7 shows the function
plot with different compactness factors.

Results

In the examples shown in Figure 4.8 we used a compactness factor ¢ = 2.0. The black faces are
particular faces that have two or less corner vertexes, and then are not physically developable. In
the Section 4.4 we show how identify these faces and how we generally manage a segmentation.

4.4 Managing Segmentation

The resulting segmentation from the graph-cut execution is not yet a good segmentation. Graph-
cut can manage only local constraints, such as two adjacent triangles that can’t have two particular
labels. However, a good segmentation must have some global features, defined at "chart level". In
our context, a chart is a group of adjacent triangles having the same label. A chart is characterized
of a set of triangles with the same label, a set of boundary edges (edges incident on a triangle of the
chart and on a triangle that not belongs to the chart), a set of chart neighbors and a set of corners,
that are vertexes with at least three incident charts.

Data Structures and Algorithms

14



© o

(a) Sphere model (b) Abstract Sculpture model

(c) Bunny model (d) Kitten model

(e) Holes Arm model (f) BU model

Figure 4.8: Graph-Cut Labelings
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To managing a segmentation, we need a data structure
and a set of algorithms suitable for our purposes. Our
segmentation isa graph G = (N, A), where every chart
is identified by a node p € N, and when two charts p
and q are adjacent there is an edge (p, ¢q) € A. A node
p € N is composed of a list of ¢ triangles, a list of n
external boundary edges, k lists of internal boundary
edges and a list of m corners.

Finding the ¢ triangles of a chart is quite simple.
Starting from a triangle of the chart, we can do a sim-
ple flooding to the adjacent triangles with the same la-

bel, and marking as visited the triangles already added Figure 4.9: Possible segmentation on the
to the triangle list. base of the Bunny model

For the boundary edges, the problem is more com-
plex. It may happen that a chart has one or plus holes, like in the Rocker Arm model (Figure 4.8f)
or in the base of the Bunny model (Figure 4.9). To obtain list of external boundary edges and the
lists of all internal boundary edges (a boundary for every hole), we can start from a unordered list
of boundary edges seen during the flooding of the triangles. Starting from an edge on that list, and
following the verse of the edge in the incident triangle of the chart, we can simply navigate the mesh
following the edges that are incident in a triangle of the chart and in a triangle that don’t belongs to
the chart, until we don’t reach the starting edge. If the boundary was external, we walked counter-
clockwise, otherwise we walked clockwise, as shown in Figure 4.10. We build boundary edges until
we haven't visited all the edges that are in the unordered list. Now we have to find which boundary
is the external boundary. To do that, we calculate a point that is an average of the coordinates of all
vertexes in the chart. After that, we look for the vertex on the boundaries farthest from the center.
This vertex belongs to the external boundary, and all other boundary are then internal boundaries.

Now is simple to find the list of the corners for a
chart: we can simply walk every boundary and look
for the number of charts incident in every boundary %
vertexes: if that number is greater than or equal to / ;
three, the vertex is a corner. F ‘ >

Doing these operations for every chart, until | \\ = N
there are unvisited triangles, and inserting an edge ‘ "
on the graph for every pair of neighbors charts, we C

X

A »
v — \
have build the graph of the segmentation. The last \\ 7% \ 5
step is to find the bad charts. In our algorithm, a \ / \ /

chart is bad if: "

NI

BYAN

*

« has number of corners less than or equal to

two; Figure 4.10: External boundary (blue) and in-

ternal boundary (green)
* is a triangle strip and hasn’t two neighbors
with opposite label.

If the number of corner is less than or equal to
two, we can’t have a surface polygon, and that chart has to be eliminated. If the chart is a triangle
strip, it may be noise on segmentation. However, graph-cut may inserted that chart with the only
purpose to separate two charts with opposite labels, and in that case, the triangle strip must survive.

16



(a) (b)

Figure 4.11: Segmentation on Bunny and BU models after iterated bad patches deletion.

In all other cases, triangle strips are considered bad charts. Examples of bad charts can be seen in
Figure 4.8 and 4.9 (gray charts).

Deleting Bad Charts

The only way to delete a bad chart is to merge it with one of its neighbors. The best way to do that
is to select, from the set of neighbors labels, the closest label to the orientations of the triangles
of the bad chart. Therefore, when a chart is bad we calculate the average of the normals of the
triangles, and we calculate the dot product between the average normal and the orientations of the
neighbors: the highest value of the dot product gives the new label. After that, it’s necessary to
recalculate all the graph G: after deleting a bad patch is possible that other bad patches has been
created, so is necessary to iterate this process, until there are no more bad patches (the process
always converges). The result after the iteration is that in the segmentation there are only charts
with minimum three corners, and noise is completely eliminated. Figure 4.11 shows segmentations
after iterated bad patches deletion.
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Chapter 5

Making Geometry

5.1 Goals

Given a good segmentation of a 3D model, the next step is to deform the model such a way that
every chart is perfectly planar and perfectly oriented to the label of the chart. For doing this we
first calculate a driven-deformation, that gives a triangle mesh not perfectly planar, but sufficient
to determine the final geometry. From this model we can extract a coarse model characterized of
only corner vertexes, that is composed of any kind of polygonal faces, not only triangles. The result
is a coarse model very similar to the final result, but where faces are not perfectly oriented. On this
model we apply an operation of edge collapsing, aimed to delete small edges not suitable for the
cutting process. Finally, we force the orientation of every face, finding the final geometry.

5.2 Deformation

The first deformation is based on the work of Gregson et al. [GSZ11]. The purpose is to take every
surface vertex v; and rotate it in such a way that the vertex normal is closer to the label orientation
of the chart, and the length of all edges is preserved.

The deformation is divided in two steps: in the first step we calculate for every surface vertex
v;, its frame field F), (calculated on the vertex normal, that is the average of all adjacent triangle
normals); in the second step we solve a linear system that gives the new coordinates for every surface
vertex.

5.2.1 Compute

In the compute step, our purpose is to calculate, for every vertex v;, a frame field F,, that allows to
align the vertex normal 7,/ to a given target normal 7. To understand this argument, we start with
a 2D example, shown in Figure 5.1. We have a segment (v;, v;) with normal 7;}, and we want to align
the segment to the y axis, then the target normal of the segment will be 7 = 1. Let 0 the angle
between the n_w> and T =z (Figure 5.1a). If we rotate the frame composed of the = and y axis by 6
degrees, we obtain a frame F' = 2/, ' where, viewed by prospective of the original frame, the edge
0;0; is aligned to the target orientation (Figure 5.1b). For obtaining the new positions ¢; and ; on
the original frame, we can use the dot product between two vectors u and w, that calculates the w
projection on u. For preserving the edge length, we want that the projection of the edge v;v; will be
equal to the projection of the edge 0,7;. Therefore, we can consider the vector v; — v; (Figure 5.1d),
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Figure 5.1: Rotation of a Frame
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that has aligned projections in the rotated frame 2, 3/’ (Figure 5.1e), and these projections must be
the same for the rotated vector o; — 0; in the original frame (Figure 5.1f). That means that:

(171 — @J)I = (Ui — ’Uj)F
where I is the matrix composed by the original axis x and y, and F is the frame field calculated as
x/x y/x
Y
W Yw

In other words, the original edge projections on the rotated frame must be the same of the rotated
edge projections in the original frame. [ is the identity matrix, therefore the equation becomes:

(0; = 05) = (vi — ;) F

We can directly extend this concept from 2D to 3D, considering also the rotation axis. Given a
rotation angle 6 and a rotation axis u, the rotation matrix is:

cosf 4+ u? (1 —cosl)  wyu, (1 —cosh) —u,sinf wuzu, (1 —cosf)+u,sinf
R = |uyu, (1 —cosf) +u,sinf  cosf+u; (1l —cosf)  uyu,(l—cosh)—u,sin
Uty (1 —cosf) —u,sin® w,uy (1 —cosf) +u,sing  cosf + u? (1 — cosh)

where u,, u, and u, are the components of vector 7. A 3D vector ¥ can be rotated on an axis
by an angle 6 in the following way:
u =7UR

Therefore, the frame field F),, of the vertex v; is calculated simply by rotating the base frame:
F,=IxR=R

where I represent the original frame z, y, z, and

0= cos™\ (i, 1)
U =ny Xt

. .
where 72, is the normal of v; vertex, and t,, is the target normal.

For vertexes that lies in edges of the segmentation, we have two or plus targets (if they are corner
vertexes). For these vertexes, t,, is not on the set of target normals, but is calculated in the following
way:

My,

1 N
t
j=1

My,

ty, =

where m,, is the number of incident triangles in v;, and t_tj is the target normal of the j-th incident
triangle. In other words, the target normal of vertex v; will be the average of all target normals of
incident triangles.

Calculating the frame fields for every vertex is an operation that can be viewed like a gradient
calculation of the input mesh: indeed, after the compute step, we have only local information of
every vertex related with all incident triangles orientation, without taking into account spatial ref-
erences such as vertex coordinates. Solving the linear system described in Subsection 5.2.2 is like an
integrate operation, that recalculate coordinates for every vertex taking into account the rotation
described by the frame field.

5.2.2 Integrate
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Our goal now is to rotate every vertex in such a way
that edges length is preserved. Therefore, for every
pair of adjacent vertexes v; and v;, we want calculate

J5 V.
—~ /"\‘ J_l
the new vertexes position 9; and 9; in such a way that g -
will be preserved the edge projection on the three v
axis: i
/_/ &

1%

y: v

PR ~jz) = (v; — v;)F® O
-3
or, in a compact form
U = 05 = (v — 0 F Figure 5.2: Neighbors vertexes of v;

where F' is the average between F,, and F,.
Extending the concept on all v; neighbors of v;,
as shown in Figure 5.2, we can simply involve all neighbors using Laplacian weights:

where k; is the number of v; neighbors (for example, on Figure 5.2, k; = 5). Therefore, the system
for a vertex becomes:

k; ~(x ~(x k; x
A D o - UJ(' )> = 7 Lo (0 = o)) D)
ki ~ ~ ki
v B (- 0) = £ 5 (- ) F0)
ki ~\T ~(Z kz z
2o E s (07 = 97) = £ 20 (=) F9)

Like a standard integration, we have one liberty degree representing possible translations of the
input model. For this reason, we need to add another equation, where we force the position of one
vertex:

Uy = Vo
Therefore, our system has the form
Az =10
where Aisa (n + 1) X n matrix, and n is the number of vertexes. In the i-th row, we will have 1 in
the i-th column, and —kii in every j column, j € N (i), plus a row with 1 only in column 0, that is
the row where we fix the position of vertex vy. x will have n rows and three columns, one for every
coordinate value (z, y, z). b will have n + 1 rows and three columns. In the i-th row there will be
the sum over all v; neighbors of the projections (v; — v;) in the average frame F' multiplied with the
Laplacian weight, plus a row with the coordinates of the fixed v, vertex. Therefore, we solve three
systems, one for each coordinate (z, y, 2).
In the example in Figure 5.2, we will have the following row in the A matrix:

V; s szl tee Uj:Q Uj:3 ?Jj:4 Uj:f)

A= il e 1y s s a1
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d) (e) ()

Figure 5.3: Deformation of kitten model iterated 5 times

This system doesn’t have a solution, therefore we solve this system using the Ordinary Least
Squares method, that allows to find the solution that minimizes the distance with the ideal solution.

The Least Squares system becomes:
AT Az = ATb

where the solution is
= (ATA) AT
In this way, the solution is unique: if A is an x m matrix, then AT A will be a m x m matrix, and
AT will be a column vector of m terms.

5.2.3 Iterated Deformation

Since the deformation is solved by Ordinary Least Squares, the resulting mesh will be not perfectly
deformed, in fact this deformation only flattens triangles in a "gentle" way. Is possible to have a bet-
ter (but not sufficient) deformation by iterating for a number of times this deformation. Figure 5.3
shows the deformation applied 5 times.
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Figure 5.4: Triangle model and Coarse Model

5.2.4 Coarse Model Extraction

Starting from this point of the algorithm, we can operate using only the coarse model, that is the
model composed by only corner vertexes on the deformed model segmentation. A model with these
features has a face for every chart in the starting segmentation, and a surface composed by polygons
of any possible form, and not only triangles. Figure 5.4 shows the two bunny models before and after
this step: Figure 5.4a shows the triangle mesh deformed, and Figure 5.4b shows the coarse model
extracted from the triangle mesh.

5.3 Edge Collapsing

The purpose of the Edge Collapsing is to remove remain-
ing noises from graph-cut segmentation and to remove
faces and edges that are irrelevant compared to the to-
tal size of the model (Figure 5.5). The maximum length
4 of a collapsable edges is calculated as a fraction of the
bounding box diagonal of the model. We are starting from
amodel where every vertex is incident in at least three dif-
ferent faces, and one of our purposes is to obtain, at the
end of edge collapsing, a model with the same features,
where vertexes have at least three incident faces. Indeed,
vertexes with only two incident faces are useless for our
purposes, and can only cause noise.

Assuming that our model is described by a DCEL data
structure, we can assume that a collapsable edge is de-
scribed by two half edges e; and e,, incident in two ver- Figure 5.5: Collapsable Edges
texes v and v, and in two faces (that are arbitrary poly-
gons) fi and f5. Edge collapsing consists, at least, of the deletion of half edges e; and e, and vertexes
v and vy, substituted by a new vertex v (Figure 5.6).

In our implementation, all the edges having length d; < ¢ are inserted in alist [. All edges on this
list are processed starting from the smallest. We first must check if the edge is collapsable. A edge
is collapsable if its incident vertexes are not incident in two faces with opposite labels. These edges,
even if sufficiently small, are in the model with the purpose to separate two faces with opposite
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Figure 5.6: Before (a) and After (b) Edge Collapsing if there are no incident triangles

labels, and cannot be collapsed. Otherwise, we have to distinguish between three different cases,
described in the next subsections.

5.3.1 Case 1: No Incident Triangles

The first case is represented in Figure 5.6a. Faces f; and f5 are polygons with at least four edges.
This case can be simply handled by creating a new vertex v that, by approximation, has average
coordinates between v; and v,. We add all v; and v, incident edges in v and we delete half edges
e; and e, and vertexes v; and v,. No faces will be deleted, therefore all vertexes remains corner
vertexes with at least three incident faces (Figure 5.6b).

5.3.2 Case 2: One Incident Triangle

The second case is represented in Figure 5.7. In this case, we
must collapse half edges ¢, and e,, and face f;. We can create a
vertex v as average of vy and v, and this new vertex will have at v,
least three incident faces: even without f;, we know that v; is y/
incident at least in other two faces ( f; and another one at least, A 5\ A
for example f3), and the same for v, (f> and another one at least, V. \
for example f;). After f; deleting, new vertex v will be incident ; y e 4
in these faces (fs, f3 and f, at least). 6« e, 3
After deleting f1, v will have one less incident face: we must :
differentiate between the case when v; has at least four incident
faces, and the case when v3 has only three incident faces.

Figure 5.7: One Incident Triangle
Case 2a

If v3 has at least four incident faces before collapsing (Fig-

ure 5.12a), we have to create the new vertex v as average of v;

and vy, adjust all incidences in v, and delete v, v, €1, €9, f1 and all incident half edges in f;. After
these operation, vs is still a corner vertex with at least three incident faces (Figure 5.12b).
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Figure 5.8: Edge collapsing cases (a, ¢) and solutions (b, d) if there is one incident triangle

Case 2b

If v3 has only three incident faces (Figure 5.8c), after col-
lapsing will not be a corner vertex because we deleted f;.
Therefore, we have to considerate the remaining vz adja-
cent vertex, that we call v,. We assume that v, is a cor-
ner vertex, and then has at least three adjacent faces. In
this case, in addition to the operation performed in the
previous case, we must delete all half edge twins of inci-
dent half edges in f; and vertex v3. The new vertex v will
be linked to v,, that was and still remains a corner vertex
(Figure 5.8d).

5.3.3 Case 3: Two Incident Triangles

The third case is represented in Figure 5.9. This is a diffi-
cult case to deal with, because there are a different (sim-
ilar) sub-cases to consider: we must delete two faces (f;
and f>), that involve four vertexes (vy, v9, v3 and v,). We
have to handle six different sub-cases:

a) The union of v; and vy incident faces is composed of at least five faces, and both v3 and v, have

at least four incident faces (Figure 5.10a);

b) The union of v, and v, incident faces is composed of at least five faces, vz (v,) has three incident

Figure 5.9: Two Incident Triangles

faces and v, (v3) has at least four incident faces (Figure 5.10b);

¢) The union of v; and v, incident faces is composed of at least five faces, and both v3 and v, have

only three incident faces (Figure 5.10c);

d) The union of v; and vy incident faces is composed of only four faces, and both v3 and v, have

at least four incident faces (Figure 5.10d);

e) The union of v; and vy incident faces is composed of only four faces, v3 (v4) has three incident

faces and v, (v3) has at least four incident faces (Figure 5.10e);
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f) The union of v; and vy incident faces is composed of only four faces, and both v3 and v, have
only three incident faces (Figure 5.10f);

All cases are handled as explained in the following sections.

Case 3a

This case (Figure 5.10a) is the simplest: we create a new vertex v as average of v; and v, (adjusting
the half edge incidences), and we delete vy, vo, f1, fo and all incident half edges on these two faces.
All other incident faces on v, and v, will become incident faces in v, that are at least three and
therefore v is a corner vertex. vz and v, had at least four incident faces, therefore now they have at
least three incident faces and they are corner vertexes (Figure 5.11a).

Case 3b

This case (Figure 5.10b) is similar to Case 2a, when only one triangle is incident in the collapsable
edge: after executing the operations described in the Case 3a, v3 is no longer a corner. Therefore v3
must be eliminated, and the new vertex v will be linked to the remaining v5 adjacent vertex vs, that
still remains a corner vertex (Figure 5.11b).

Case 3c

This case (Figure 5.10c) is the basically the same of Case 3b, where both v3 and v, must be eliminated.
Therefore, new vertex v will be linked to vs and vg. All these vertexes remains corner vertexes
(Figure 5.11c).

Case 3d

In this case (Figure 5.10d) the union of v; and vy incident faces is composed of only four faces: after
delete f; and f5, new vertex v couldn’t have three incident faces at least, and therefore couldn’t be a
corner vertex. In this case we don’t create a new vertex v: we just delete vy, vs, f1, fo and all incident
edges on these faces, and we simply link v3 and vy, that still are corner vertexes (Figure 5.11d).

Case 3e

This case (Figure 5.10e) is the union of Cases 3b and 3d. As in Case 3d, vertex v will not be created,
vs will be deleted because isn’t a corner vertex, and vertex v, is directly linked with vs, that still are
corner vertexes (Figure 5.11e).

Case 3f

This case (Figure 5.10f) is the union of Cases 3c and 3d. As in case 3d, vertex v will not be created, v3
and v, will be deleted because aren’t corner vertexes, and vertex vg is directly linked with vs, that
still are corner vertexes (Figure 5.11f).
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Figure 5.10: Six different cases of edge collapsing if there are two incident triangles
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Figure 5.11: Six different cases after edge collapsing
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Figure 5.12: Kitten model before (a) and after (b) edge collapsing

5.3.4 Results

A result of a model where is executed edge collapsing is shown in Figure 5.12. In our algorithm,
edge collapsing is executed repeatedly with planarization (described in Section 5.4). In this way,
we are able to identify and eliminate edges that are collapsing after a given number planarization
iterations.

5.4 Planarization

Last step of our algorithm, that we called "Planarization", has the goal to return all charts perfectly
planar and oriented to their label normal, starting from a model where charts have orientations
similar but not equals to the goal orientations. Starting orientations are inherited from iterated
deformation on the triangular mesh (Section 5.2) and edge collapsing (Section 5.3), that modifies
orientations when a new vertex is created as average of two old vertexes.

Planarization consist of solving a system of equations, where every vertex is related to its ver-
tex neighbors, and every chart is forced to be tangent with a plane oriented on the right normal.
The system of equation is of the type Ax = b, and a simple scheme that represent it is shown in
Figure 5.13.

The equation of a generic plane is

ar+by+cz—d=0

where a, b and ¢ are the component of the normal to the plane. Therefore, given a face f; that we
want to orient to the normal a;, b;, ¢; and a set of vertexes incident to f;, our unknowns are all the
vertexes coordinates and the d; terms that fixes all the incident vertexes in the plane

a;x 4+ bjy +cjz—d;j =0

Then, we have 3n, + n; unknowns, where n, is the number of vertexes (three unknowns for every
vertex: one for = coordinate, one for y coordinate and one for z coordinate) and nf is the number
of faces.
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Figure 5.13: Scheme of the Planarization System
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(a) (b)

Figure 5.14: Kitten model before (a) and after (b) planatization

As explained by Sorkine [Sor06], we can relate every vertex with its neighbors using -coordinates.
Given a vertex v;, d-coordinates of v; are the difference between absolute coordinates of v; and the
center of mass of its neighbors:

5. — (57:(m),5§y)75§z)) _ _% S

where N (i) is the set of index neighbors of v; and k; is the number of v; neighbors. We want that
these center of mass remains basically the same, therefore, for every vertex we put the following
constraint in the system:

where 0, are the vertex coordinates unknowns. Like the deformation system, also in this case passing
from absolute to d-coordinates we lose the information of the position of the model in the space.
Therefore, returning to absolute coordinates has a liberty degree given by all possible translations
of the model in the space. Also in this case, to have as result a planarized model in the same position
of the input model, we need to fix the coordinates of a vertex vy by simply adding the following
constraint in the system:

V; = U;

Unlike the deformation systems, in the planarization system the coordinates of all vertex are re-
lated by the plane equations (described in the following paragraphs), therefore we can’t solve three
separate systems, but we must solve a single big system where there are all z, y and z coordinates
of all vertexes.

Last rows in the A matrix and b vector are related to the planar constraints. We used the symbol
1 for the incidence relation: v; L f; means that vertex v; is incident in face f;.
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Let a;, b;, ¢;, d; the components that describes the plane associated to the face f;. If vertex v; is
incident in face f;, we have to add the following constraint in the system:
a;0{") + b0 + c;0f) —d; =0
that imposes that v, lies in a plane with normal a;, b;, ¢;, with unknown d;.
For every vertex v;, there are many equations as the number of its incident faces:

b= {000, 00 |V 16y L f 0500 + b0 + el — d; = 0}

@ 5% 5) d; are the unknowns.

where v;", 0, 0;

For a vertex in a mesh, the number of incident faces is equal to the number of incident edges,
and every edge is incident in two vertexes, therefore the number of planar constraints is 2n., where
n. is the number of edges.

Therefore, the size of A matrix is (3n, + 2n.) x (3n, + nys), and is composed of the coefficients
that multiplies unknowns in every equation.

Also in this case, this system has no exact solution, then we solve that iterating Ordinary Least

Squares solutions. A model before and after the planarization is shown in Figure 5.14.
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Chapter 6

Results

Unfortunately, after we have implemented all the modules of the project, we realized that there are
other topology constraints that must be met to obtain physically developable models. These con-
straints are very difficult to identify and solve in our method, because are global features impossible
to avoid with graph-cut.

On Figure 6.1 is shown an example of these problems. In the bunny head, after planarization,
the 3D model viewer can’t visualize blue and yellow charts because are not simple polygons, and
there are two overlapping edges (Figure 6.1c). This happens because there is an incident edge in
the blue and yellow charts (the right magenta chart is collapsed) that separates cyan and red charts
(Figure 6.1b). But these charts wants simply to intersect each others, making impossible to exist the
edge incident in blue and yellow charts. Rather, there should be an edge incident in cyan and red
charts.

This problem starts on segmentation time (Figure 6.1a), and is very hard to automatically iden-
tify it because it depends on all the geometry of the model (in this case, the bunny head shrinks due
to charts in the back), and occur after planarization, when we obtain the final model.

However, there are other models that don’t have these problems. Algorithm times (seconds) of
some test models are shown in 6.1 and Algorithm steps and results are shown in the next pages.
On these results, are executed five iterations of deformation and two iterations of edge collapsing
followed by planarization. In the total time, in addition to the single steps times, are counted times
for loading the input and for saving outputs.

\

(a) (b)

Figure 6.1: Problems with head bunny model
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Models Number of | Graph-Cut | Deleting Deformation| Edge Collapsing and | Total
Vertexes Bad Charts Planarization

Sphere 5,762 0.462563 0.016439 1.05252 0.021953 1.7065

Abstract 8,286 0.606282 0.047811 2.18808 0.082549 3.14733

Sculpture

Bunny 28,088 4.65914 0.264375 7.97025 0.086137 13.6832

Kitten 24,979 3.24461 0.218971 5.52845 0.092082 9.7585

Holes 7,982 0.807621 0.02452 1.38435 0.047647 2.50787

BU 36,224 5.71704 0.356566 10.7044 0.066344 17.715

Table 6.1; Execution Times
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(a) Input model (b) Segmented model
(c) Deformed model (d) Coarse model

(e) Collapsed and Planarized model

Figure 6.2: Sphere Model
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(a) Input model (b) Segmented model
(c) Deformed model (d) Coarse model

(e) Collapsed and Planarized model

Figure 6.3: Abstract Sculpture Model
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(a) Input model (b) Segmented model

(c) Deformed model (d) Coarse model

(e) Collapsed and Planarized model

Figure 6.4: Kitten Model
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(a) Input model (b) Segmented model

(c) Deformed model (d) Coarse model

(e) Collapsed and Planarized model

Figure 6.5: Holes Model
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(a) Input model (b) Segmented model

+ 4

(c) Deformed model (d) Coarse model

(e) Collapsed and Planarized model

Figure 6.6: BU Model
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Chapter 7

Conclusions and Future Works

The goal of this thesis, given a generic 3D model, was to obtain a coarse 3D model that had good
features that allows a simplified construction process using rigid materials like wood or thick pa-
per. The resulting algorithm developed during this work is an algorithm that doesn’t work with all
possible models. This fact is consequence of a bad segmentation obtained using an optimization
algorithm that is general and doesn’t solve the problem from a geometric point of view.

We tried to solve this gap using several techniques (e.g. edge collapsing, an ideal angle collapsing
(that collapses where there is an angle less than a given threshold angle) or the alternation of edge
collapsing and planarization), but unfortunally these techniques are not sufficient. Trying to solve
these problems using other different post-processing starting from a segmentation obtained with
Graph-Cut is a very hard problem. These facts suggests that Graph-Cut is not the best way to obtain
a good segmentation. Our purpose is to have a segmentation with rare imperfections which are easy
to handle and solve (without, for example, handle too many cases of edge collapsing). Therefore, a
basic future work is to find another way to obtain better segmentations.

Understand if a segmentation is physically
developable by simply looking at it is difficult:
a possible future work can be the formalization
of the concept of "good segmentation", where
every chart has to be planar, and eventually the
developing of an algorithm that understands if
a segmentation is good for our purposes.

Another interesting future work is to for-
malize a optimization problem that, given a pla-
narized model and the dimensions of a sheet
of wood/paper, gives in output the minimum
number of sheets containing the unfolded faces
that can be adjacent during the milling process
(Figure 7.1).

Figure 7.1: Unfolded Sphere Model
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